[1]韩志艳,伦淑娴,王健.基于遗传小波神经网络的语音情感识别[J].计算机技术与发展,2013,(01):75-78.
 HAN Zhi-yan,LUN Shu-xian,WANG Jian.Speech Emotion Recognition Based on Genetic Wavelet Neural Network[J].,2013,(01):75-78.
点击复制

基于遗传小波神经网络的语音情感识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年01期
页码:
75-78
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Speech Emotion Recognition Based on Genetic Wavelet Neural Network
文章编号:
1673-629X(2013)01-0075-04
作者:
韩志艳伦淑娴王健
渤海大学 工学院
Author(s):
HAN Zhi-yanLUN Shu-xianWANG Jian
关键词:
情感识别神经网络遗传算法小波分析
Keywords:
emotion recognitionneural networkgenetic algorithmwavelet transform
文献标志码:
A
摘要:
情感识别是人机交互领域中必须解决的关键问题.针对语音情感的识别问题,文中把遗传算法和小波神经网络算法相结合,即利用遗传算法具有的高度并行、随机、自适应搜索性能来选取初值进行训练,用小波神经网络来完成给定精度的学习.这样在解决复杂和非线性问题时,具有明显的优势.文中主要研究了四种基本的人类情感:喜悦、愤怒、悲伤和恐惧.并与 BP 算法和小波神经网络算法进行了比较,实验结果表明,该模型不但能够提高情感识别的正确率,缩短系统识别时间,而且为算法的实用性奠定了基础
Abstract:
Emotion recognition is the key issue that must be solved in human-computer interaction. Aiming at the recognition problem of speech emotion,combined genetic algorithm and wavelet neural network algorithm,utilize the performance of height parallel,random and adaptive search to select initial values,and using wavelet neural network to finish the learning. This has obvious advantages of solving complex and nonlinear problem. Four basic human emotions including joy,anger,sadness and fear were studied,and compared with back propagation neural network (BPNN) and wavelet neural network. The experimental results indicate that this method effectively improves the correct rate of emotion recognition,shortens the system recognition time,and lays the foundation for algorithm practicality

相似文献/References:

[1]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(01):84.
[2]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(01):148.
[3]包力伟 周俊.铸锻企业生产质量控制系统的开发[J].计算机技术与发展,2008,(04):174.
 BAO Li-wei,ZHOU Jun.Development of a Manufacture Quality Control System in Casting Company[J].,2008,(01):174.
[4]李志俊 程家兴 金奎 饶玉佳.基于样本期望训练数的BP神经网络改进研究[J].计算机技术与发展,2009,(05):103.
 LI Zhi-jun,CHENG Jia-xing,JIN Kui,et al.BP Algorithm Improvement Based on Sample Expected Training Number[J].,2009,(01):103.
[5]李龙澍 葛瑞峰 王慧萍.基于神经网络的批强化学习在Robocup中的应用[J].计算机技术与发展,2009,(07):98.
 LI Long-shu,GE Rui-feng,WANG Hui-ping.Application of Batch Reinforcement Learning Based on NN to Robocup[J].,2009,(01):98.
[6]贾志先.神经网络在空白试卷识别中的应用[J].计算机技术与发展,2009,(08):208.
 JIA Zhi-xian.Application of Neural Network in Recognization Blank Examination Paper[J].,2009,(01):208.
[7]肖宜龙 路游 亓永刚.基于神经网络的NURBS曲面重建[J].计算机技术与发展,2009,(09):65.
 XIAO Yi-long,LU You,QI Yong-gang.NURBS Surface Reconstruction Based on Neural Network[J].,2009,(01):65.
[8]蔡秋茹 罗烨 柳益君 叶飞跃.企业资信的BP神经网络评估模型研究[J].计算机技术与发展,2009,(10):117.
 CAI Qiu-ru,LUO Ye,LIU Yi-jun,et al.Research on BP Neural Network Model for Corporation Credit Rating[J].,2009,(01):117.
[9]王晓敏 刘希玉 戴芬.BP神经网络预测算法的改进及应用[J].计算机技术与发展,2009,(11):64.
 WANG Xiao-min,LIU Xi-yu,DAI Fen.Improvement and Application of BP Neural Network Forecasting Algorithm[J].,2009,(01):64.
[10]崔海青 刘希玉.基于粒子群算法的RBF网络参数优化算法[J].计算机技术与发展,2009,(12):117.
 CUI Hai-qing,LIU Xi-yu.Parameter Optimization Algorithm of RBF Neural Network Based on PSO Algorithm[J].,2009,(01):117.

更新日期/Last Update: 1900-01-01