[1]吴绍兵.基于贝叶斯网络的信息提取技术研究[J].计算机技术与发展,2012,(11):225-228.
 WU Shao-bing.Research of Information Extraction Technique Based on Bayesian Network[J].,2012,(11):225-228.
点击复制

基于贝叶斯网络的信息提取技术研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年11期
页码:
225-228
栏目:
安全与防范
出版日期:
1900-01-01

文章信息/Info

Title:
Research of Information Extraction Technique Based on Bayesian Network
文章编号:
1673-629X(2012)11-0225-04
作者:
吴绍兵
云南警官学院信息网络安全学院
Author(s):
WU Shao-bing
Institute of Information Security, Yunnan Police Officer Academy
关键词:
贝叶斯网络信息提取用户模型
Keywords:
Bayesian network information extractions user model
分类号:
TP309
文献标志码:
A
摘要:
随着互联网的飞速发展,公开获取可靠信息的不断增加,人们可从网络上获取各种各样的信息资源,这给人们的学习和利用信息带来了极大的方便。同时面对浩如烟海的海量信息,如何在短时间内获取人们感兴趣和有用的信息,成为目前关注的热点。同时信息提取活动是一个复杂的过程,基于此,文中提出了一种利用贝叶斯网络的方法来对信息进行有效提取的方法,得出了贝叶斯网络信息提取模型。通过VC++6.0编程,模拟实现了所提出的方法,实验结果表明该方法是可行的
Abstract:
With the rapid development of the internet, growing number of open access to reliable information, people can get all sorts of information from a network resource, which bring great convenience to the learning and use of information. Facing the vast mass of in formation, how to get the interested and useful information for people within a short time became the focus of attention. At the same time, information extraction activity is a complex process, for this gave a Bayesian network approach to the method of extracting information, come to a Bayesian network model of information extraction. Through the VC++6.0 program, simulated the approach proposed, simulaton results indicate that the method is feasible

相似文献/References:

[1]宫义山 高媛媛.基于信息融合的诊断贝叶斯网络研究[J].计算机技术与发展,2009,(06):106.
 GONG Yi-shan,GAO Yuan-yuan.Diagnostic Bayesian Networks Research Based on Information Fusion[J].,2009,(11):106.
[2]黄晟 刘海韬.基于WHOIS建立IP位置系统实现P2P拓扑感知[J].计算机技术与发展,2009,(07):80.
 HUANG Sheng,LIU Hai-tao.Build IP Location System Using WHOIS for P2P Network Topology - Aware Routing[J].,2009,(11):80.
[3]周登 戴玉刚 付涛.基于树结构的Web信息抽取[J].计算机技术与发展,2009,(09):38.
 ZHOU Deng,DAI Yu-gang,FU Tao.Extracting Web Data Using Tree Structure[J].,2009,(11):38.
[4]奚海荣 马文丽 梁斌.基于贝叶斯网络SP算法的改进研究[J].计算机技术与发展,2009,(03):155.
 XI Hai-rong,MA Wen-li,LIANG Bin.Improvement of SP Algorithm Based on Bayesian Networks[J].,2009,(11):155.
[5]王峻 周孟然.一种基于MDL度量的选择性扩展贝叶斯分类器[J].计算机技术与发展,2007,(07):35.
 WANG Jun,ZHOU Meng-ran.A Selective Augmented Naive Bayesian Classifier Based on MDL Score[J].,2007,(11):35.
[6]程泽凯.基于TAN结构的启发式贝叶斯网络结构学习算法[J].计算机技术与发展,2007,(08):61.
 CHENG Ze-kai.BN Structure Learning Heuristic Algorithm Based on TAN Structure[J].,2007,(11):61.
[7]鄢沛 郭皎 应宏.一个基于.NET的多线程信息提取框架[J].计算机技术与发展,2007,(12):96.
 YAN Pei,GUO Jiao,YING Hong.A . NET- Based Multithreaded Information Extraction Framework[J].,2007,(11):96.
[8]蒋望东 林士敏 鲁明羽[].基于BIC测度和混合遗传算法的BNC结构学习[J].计算机技术与发展,2007,(03):84.
 JIANG Wang-dong,LIN Shi-min,LU Ming-yu.Structure Learning of BNC Based on BIC and Hybrid Genetic Algorithms[J].,2007,(11):84.
[9]孙笑微 赵大宇 李晓毅 唐恒永.用于数据挖掘的TAN分类器的研究与应用[J].计算机技术与发展,2006,(11):140.
 suN Xiao-wei,ZHAO Da-yu,LI Xiao-yi,et al.Study and Application of TAN Classifier for Data Mining[J].,2006,(11):140.
[10]钟仕群 朱程荣 熊齐邦.一种基于贝叶斯网络的集成的故障定位模型[J].计算机技术与发展,2006,(12):13.
 ZHONG Shi-qun,ZHU Cheng-rong,XIONG Qi-bang.An Integrated Fault Localization Model Based on Bayesian Networks[J].,2006,(11):13.

备注/Memo

备注/Memo:
国家社科基金课题(09XTQO04)吴绍兵(1976-),男,云南永善人,讲师,研究方向为算法、人工智能、信息安全和计算机取证等
更新日期/Last Update: 1900-01-01