[1]杨玉梅 黎仁国 符红霞[].基于遗传算法的WSMO服务组合模型研究[J].计算机技术与发展,2012,(07):116-120.
 YANG Yu-mei,LI Ren-guo,FU Hong-xia.WSMO Service Composition Model Based on Genetic Algorithm[J].,2012,(07):116-120.
点击复制

基于遗传算法的WSMO服务组合模型研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年07期
页码:
116-120
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
WSMO Service Composition Model Based on Genetic Algorithm
文章编号:
1673-629X(2012)07-0116-05
作者:
杨玉梅1 黎仁国2 符红霞[3]
[1]川北医学院图书馆[2]西华师范大学数学与信息学院[3]阿坝师范高等专科学校计算机科学系
Author(s):
YANG Yu-mei LI Ren-guo FU Hong-xia
[1]Library of North Sichuan Medical College[2]School of Mathematics and Information of China West Normal University[3]Department of Computer Science of Aba Teachers College
关键词:
语义服务组合遗传算法WSMO本体
Keywords:
semantics service component genetic algorithm WSMO ontology
分类号:
TP31
文献标志码:
A
摘要:
面向服务计算已在各类电子商务、B2B、旅游等领域得到了应用。它通常通过一个标准化的Web服务模型去快速设计、实现、部署和发送各类应用功能,但实现业务的功能最终是体现在服务组合上。因此,针对在服务组合过程中所出现的语义识别、信息抽取方面的问题,文中提出一种基于遗传算法的WSMO服务组合方法。该方法通过使用基于Ontology的WSMO进行服务的语义性描述,采用服务组合过程的语法检测和语义验证来实现模型;在语法检测中,是通过定义语法依赖对齐来完成,而在语义验证中,是通过各种衔接模式来实现的;并通过带有精英策略的小生境遗传算法进行求解最优的服务组合去满足业务逻辑需求。最后通过应用表明:服务组合效率比传统方法更优越,完成的业务功能更精确
Abstract:
People are able to design,implement, deploy and deliver all kinds of application functionalities using a standardized Web serv- ices model, and those functionalities are implementing with composition services. But, aiming at the problems of semantic recognition and information extraction in the service composition, advance a method of service composition based on genetic algorithm. Firstly, adopt WS- MO to describe semantic service. Second, adopt grammar detecting and semantic verifying to implement the model in service composition process, and genetic algorithm of master grandfinals and econiche compute optimum service composition to meet requirement of business lozic. Finally. aoolication and analysis indicates that it is better than tradition method

相似文献/References:

[1]冯智明,苏一丹,覃华,等.基于遗传算法的聚类与协同过滤组合推荐算法[J].计算机技术与发展,2014,24(01):35.
 FENG Zhi-ming,SU Yi-dan,QIN Hua,et al.Recommendation Algorithm of Combining Clustering with Collaborative Filtering Based on Genetic Algorithm[J].,2014,24(07):35.
[2]余晓光 严洪森 殷乾坤.基于Flexsim的车间调度优化[J].计算机技术与发展,2010,(03):44.
 YU Xiao-guang,YAN Hong-sen,YIN Qian-kun.Workshops Scheduling Optimization Based on Flexsim Simulation[J].,2010,(07):44.
[3]贺计文 宋承祥 刘弘.基于遗传算法的八数码问题的设计及实现[J].计算机技术与发展,2010,(03):105.
 HE Ji-wen,SONG Cheng-xiang,LIU Hong.Design and Implementation of Eight Puzzle Problem Based on Genetic Algorithms[J].,2010,(07):105.
[4]沈珏萍 庄亚明.基于Agent的二级供应链企业自动谈判研究[J].计算机技术与发展,2010,(03):121.
 SHEN Jue-ping,ZHUANG Ya-ming.A Research for Company Automatic Negotiation in Secondary Supply Chain Based on Agent[J].,2010,(07):121.
[5]张磊 王晓军.基于遗传算法的业务流程测试[J].计算机技术与发展,2010,(03):155.
 ZHANG Lei,WANG Xiao-jun.Test of Business Process Based on Genetic Algorithm[J].,2010,(07):155.
[6]曹道友 程家兴.基于改进的选择算子和交叉算子的遗传算法[J].计算机技术与发展,2010,(02):44.
 CAO Dao-you,CHENG Jia-xing.A Genetic Algorithm Based on Modified Selection Operator and Crossover Operator[J].,2010,(07):44.
[7]范维博 周俊 许正良.应用遗传算法求解第一类装配线平衡问题[J].计算机技术与发展,2010,(02):194.
 FAN Wei-bo,ZHOU Jun,XU Zheng-liang.Appication of Genetic Algorithm to Assembly Line Balancing[J].,2010,(07):194.
[8]熊伟平 曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,(03):9.
 XIONG Wei-ping,ZENG Bi-qing.Studies on Some Bionic Optimization Algorithms[J].,2010,(07):9.
[9]余晓光 严洪森.基于禁忌搜索遗传混合算法的装配线平衡[J].计算机技术与发展,2010,(05):5.
 YU Xiao-guang,YAN Hong-sen.Assembly Line Balancing Based on Tabu Search and Genetic Hybrid Algorithm[J].,2010,(07):5.
[10]黄永聪 张旭[] 吴义纯 吴琦 程家兴.改进的径向基函数网络的研究及应用[J].计算机技术与发展,2010,(05):158.
 HUANG Yong-cong,ZHANG Xu,WU Yi-chun,et al.Research and Application of Improved Genetic Algorithm-Based RBFANN[J].,2010,(07):158.

备注/Memo

备注/Memo:
四川省科技计划项目(2010JYOJ41);四川省教育自然科学基金(09ZC002)杨玉梅(1978-),女,硕士,讲师,主要从事信息与服务研究
更新日期/Last Update: 1900-01-01