[1]刘慧婷 姜晓涛 陈健.基于遗传算法的网格任务调度方法研究[J].计算机技术与发展,2012,(04):69-72.
 LIU Hui-ting,JIANG Xiao-tao,CHEN Jian.Research of Grid Task Scheduling Strategy Based on Genetic Algorithm[J].,2012,(04):69-72.
点击复制

基于遗传算法的网格任务调度方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年04期
页码:
69-72
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research of Grid Task Scheduling Strategy Based on Genetic Algorithm
文章编号:
1673-629X(2012)04-0069-04
作者:
刘慧婷 姜晓涛 陈健
安徽大学计算机科学与技术学院
Author(s):
LIU Hui-tingJIANG Xiao-taoCHEN Jian
College of Computer Science and Technology,Anhui University
关键词:
网格任务调度遗传算法非线性问题收敛性
Keywords:
grid task scheduling strategy genetic algorithm nonlinear problem degree of convergence
分类号:
TP31
文献标志码:
A
摘要:
网格任务调度是典型的NP完全问题,因此如何快速地找到全局最优解是网格任务调度的难点所在。而遗传算法在解优化问题上具有快速性和健壮性,因而遗传算法是解决复杂的非线性问题,特别是复杂环境下的资源调度的有效方法。文中先对网格任务调度进行建模,把资源分配抽象成染色体上的等位基因,然后采用遗传算法对生成的染色体进行杂交、变异进化模拟,并且利用相对适应度以及精英选择来提高算法的收敛性。仿真结果表明,该改进算法能更有效地解决网格任务调度问题
Abstract:
Grid task scheduling strategy is a typical NP complete problem,so the difficulty of grid task scheduling strategy is how to find the optimal solution in overall situation.While genetic algorithm has the speediness and robust trait on the optimum problem,therefore genetic algorithm is an effective method on solving the complex nonlinear problem,particularly on resource scheduling in complex environment.In this paper,firstly create the grid task scheduling model,Abstract distribution of the resource to allele on the chromosome,and then use genetic algorithm to simulate hybridization and mutation evolution of the generated chromosome,utilize comparative fitness and elite selection to improve degree of convergence of the algorithm.The simulation results show that this improved algorithm can solve the problem of grid task scheduling more effectively

相似文献/References:

[1]冯智明,苏一丹,覃华,等.基于遗传算法的聚类与协同过滤组合推荐算法[J].计算机技术与发展,2014,24(01):35.
 FENG Zhi-ming,SU Yi-dan,QIN Hua,et al.Recommendation Algorithm of Combining Clustering with Collaborative Filtering Based on Genetic Algorithm[J].,2014,24(04):35.
[2]余晓光 严洪森 殷乾坤.基于Flexsim的车间调度优化[J].计算机技术与发展,2010,(03):44.
 YU Xiao-guang,YAN Hong-sen,YIN Qian-kun.Workshops Scheduling Optimization Based on Flexsim Simulation[J].,2010,(04):44.
[3]贺计文 宋承祥 刘弘.基于遗传算法的八数码问题的设计及实现[J].计算机技术与发展,2010,(03):105.
 HE Ji-wen,SONG Cheng-xiang,LIU Hong.Design and Implementation of Eight Puzzle Problem Based on Genetic Algorithms[J].,2010,(04):105.
[4]沈珏萍 庄亚明.基于Agent的二级供应链企业自动谈判研究[J].计算机技术与发展,2010,(03):121.
 SHEN Jue-ping,ZHUANG Ya-ming.A Research for Company Automatic Negotiation in Secondary Supply Chain Based on Agent[J].,2010,(04):121.
[5]张磊 王晓军.基于遗传算法的业务流程测试[J].计算机技术与发展,2010,(03):155.
 ZHANG Lei,WANG Xiao-jun.Test of Business Process Based on Genetic Algorithm[J].,2010,(04):155.
[6]曹道友 程家兴.基于改进的选择算子和交叉算子的遗传算法[J].计算机技术与发展,2010,(02):44.
 CAO Dao-you,CHENG Jia-xing.A Genetic Algorithm Based on Modified Selection Operator and Crossover Operator[J].,2010,(04):44.
[7]范维博 周俊 许正良.应用遗传算法求解第一类装配线平衡问题[J].计算机技术与发展,2010,(02):194.
 FAN Wei-bo,ZHOU Jun,XU Zheng-liang.Appication of Genetic Algorithm to Assembly Line Balancing[J].,2010,(04):194.
[8]熊伟平 曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,(03):9.
 XIONG Wei-ping,ZENG Bi-qing.Studies on Some Bionic Optimization Algorithms[J].,2010,(04):9.
[9]余晓光 严洪森.基于禁忌搜索遗传混合算法的装配线平衡[J].计算机技术与发展,2010,(05):5.
 YU Xiao-guang,YAN Hong-sen.Assembly Line Balancing Based on Tabu Search and Genetic Hybrid Algorithm[J].,2010,(04):5.
[10]黄永聪 张旭[] 吴义纯 吴琦 程家兴.改进的径向基函数网络的研究及应用[J].计算机技术与发展,2010,(05):158.
 HUANG Yong-cong,ZHANG Xu,WU Yi-chun,et al.Research and Application of Improved Genetic Algorithm-Based RBFANN[J].,2010,(04):158.
[11]肖青 杨长兴 杨炼.一种基于遗传算法的网格任务调度算法[J].计算机技术与发展,2008,(08):32.
 XIAO Qing,YANG Chang-xing,YANG Lian.Grid Task Scheduling with an Improved Genetic Algorithm[J].,2008,(04):32.

备注/Memo

备注/Memo:
国家自然科学基金项目(70871033)刘慧婷(1978-),女,博士,副教授,研究方向为数据挖掘;姜晓涛(1985-),男,硕士研究生,研究方向为数据挖掘
更新日期/Last Update: 1900-01-01