[1]邹腊梅 龚向坚.基于混合模拟退火-遗传算法和HMM的Web挖掘[J].计算机技术与发展,2012,(03):106-109.
 ZOU La-mei,GONG Xiang-jian.Web Mining Based on Hybrid Simulated Annealing Genetic Algorithm and HMM[J].,2012,(03):106-109.
点击复制

基于混合模拟退火-遗传算法和HMM的Web挖掘()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年03期
页码:
106-109
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Web Mining Based on Hybrid Simulated Annealing Genetic Algorithm and HMM
文章编号:
1673-629X(2012)03-0106-04
作者:
邹腊梅 龚向坚
南华大学计算机科学与技术学院
Author(s):
ZOU La-meiGONG Xiang-jian
School of Computer Science and Technology,University of South China
关键词:
模拟退火算法遗传算法隐马尔可夫模型Web挖掘
Keywords:
simulated annealing algorithm genetic algorithm hidden Markov model Web mining
分类号:
TP391
文献标志码:
A
摘要:
隐马尔可夫模型训练算法是一种局部搜索算法,对初值敏感。传统方法采用随机参数训练隐马尔可夫模型时常陷入局部最优,应用于Web挖掘效果不佳。遗传算法具有较强的全局搜索能力,但容易早熟、收敛慢,模拟退火算法具有较强的局部寻优能力,但会随机漫游,全局搜索能力欠缺。综合考虑遗传算法和模拟退火算法的特点,提出混合模拟退火-遗传算法SGA,优化HMM初始参数,弥补Baum-Welch算法对初始参数敏感的缺陷,Web挖掘的实验结果表明五个域提取的REC和PRE都有明显的提高
Abstract:
The training algorithm which is used to training HMM is a sub-optimal algorithm and sensitive to initial parameters.Typical hidden Markov model often leads to sub-optimal when training it with random parameters.It is ineffective when mining Web information with typical HMM.GA has the excellent ability of global searching and has the defect of slow convergence rate.SA has the excellent ability of local searching and has the defect of randomly roaming.It combines the advantages of genetic algorithm and simulated annealing algorithm,proposes hybrid simulated annealing genetic algorithm(SGA).SGA chooses the best SGA parameters by experiment and optimizes HMM combining Baum-Welch during the course of Web mining.The experimental results show that the SGA significantly improves the performance in precision and recall

相似文献/References:

[1]冯智明,苏一丹,覃华,等.基于遗传算法的聚类与协同过滤组合推荐算法[J].计算机技术与发展,2014,24(01):35.
 FENG Zhi-ming,SU Yi-dan,QIN Hua,et al.Recommendation Algorithm of Combining Clustering with Collaborative Filtering Based on Genetic Algorithm[J].,2014,24(03):35.
[2]余晓光 严洪森 殷乾坤.基于Flexsim的车间调度优化[J].计算机技术与发展,2010,(03):44.
 YU Xiao-guang,YAN Hong-sen,YIN Qian-kun.Workshops Scheduling Optimization Based on Flexsim Simulation[J].,2010,(03):44.
[3]贺计文 宋承祥 刘弘.基于遗传算法的八数码问题的设计及实现[J].计算机技术与发展,2010,(03):105.
 HE Ji-wen,SONG Cheng-xiang,LIU Hong.Design and Implementation of Eight Puzzle Problem Based on Genetic Algorithms[J].,2010,(03):105.
[4]沈珏萍 庄亚明.基于Agent的二级供应链企业自动谈判研究[J].计算机技术与发展,2010,(03):121.
 SHEN Jue-ping,ZHUANG Ya-ming.A Research for Company Automatic Negotiation in Secondary Supply Chain Based on Agent[J].,2010,(03):121.
[5]张磊 王晓军.基于遗传算法的业务流程测试[J].计算机技术与发展,2010,(03):155.
 ZHANG Lei,WANG Xiao-jun.Test of Business Process Based on Genetic Algorithm[J].,2010,(03):155.
[6]曹道友 程家兴.基于改进的选择算子和交叉算子的遗传算法[J].计算机技术与发展,2010,(02):44.
 CAO Dao-you,CHENG Jia-xing.A Genetic Algorithm Based on Modified Selection Operator and Crossover Operator[J].,2010,(03):44.
[7]范维博 周俊 许正良.应用遗传算法求解第一类装配线平衡问题[J].计算机技术与发展,2010,(02):194.
 FAN Wei-bo,ZHOU Jun,XU Zheng-liang.Appication of Genetic Algorithm to Assembly Line Balancing[J].,2010,(03):194.
[8]熊伟平 曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,(03):9.
 XIONG Wei-ping,ZENG Bi-qing.Studies on Some Bionic Optimization Algorithms[J].,2010,(03):9.
[9]余晓光 严洪森.基于禁忌搜索遗传混合算法的装配线平衡[J].计算机技术与发展,2010,(05):5.
 YU Xiao-guang,YAN Hong-sen.Assembly Line Balancing Based on Tabu Search and Genetic Hybrid Algorithm[J].,2010,(03):5.
[10]黄永聪 张旭[] 吴义纯 吴琦 程家兴.改进的径向基函数网络的研究及应用[J].计算机技术与发展,2010,(05):158.
 HUANG Yong-cong,ZHANG Xu,WU Yi-chun,et al.Research and Application of Improved Genetic Algorithm-Based RBFANN[J].,2010,(03):158.
[11]汪松泉 程家兴.遗传算法和模拟退火算法求解TSP的性能分析[J].计算机技术与发展,2009,(11):97.
 WANG Song-quan,CHENG Jia-xing.Performance Analysis on Solving Problem of TSP by Genetic Algorithm and Simulated Annealing[J].,2009,(03):97.
[12]徐留杰 王击 邹凤娇.基于降低网损和提高可靠性的配电网络重构[J].计算机技术与发展,2009,(02):193.
 XU Liu-jie,WANG Ji,ZOU Feng-jiao.Distribution Network Reconfiguration for Power Loss Reduction and System Reliability Improvement[J].,2009,(03):193.
[13]齐平 贾瑞玉 贾兆红 王会颖.用遗传模拟退火算法挖掘特征项权重的研究[J].计算机技术与发展,2007,(02):143.
 QI Ping,JIA Rui-yu,JIA Zhao-hong,et al.Using Genetic- Simulated Annealing Algorithm to Find Attribute Weighting[J].,2007,(03):143.
[14]贾丽会 张修如.BP算法分析与改进[J].计算机技术与发展,2006,(10):101.
 JIA Li-hui,ZHANG Xiu-ru.Analysis and Improvements of BP Algorithm[J].,2006,(03):101.
[15]凌 静,江凌云,赵 迎.结合模拟退火算法的遗传 K-Means 聚类方法[J].计算机技术与发展,2019,29(09):61.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 012]
 LING Jing,JIANG Ling-yun,ZHAO Ying.A Genetic K-Means Clustering Method Combined with Simulated Annealing Algorithm[J].,2019,29(03):61.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 012]
[16]邵可南,吕成瑶,张帅帅,等.一种基于冷链低碳物流路径的混合优化算法[J].计算机技术与发展,2021,31(02):27.[doi:10. 3969 / j. issn. 1673-629X. 2021. 02. 005]
 SHAO Ke-nan,LYU Cheng-yao,ZHANG Shuai-shuai,et al.A Hybrid Optimization Algorithm Based on Low-carbon Cold Chain Logistic Route[J].,2021,31(03):27.[doi:10. 3969 / j. issn. 1673-629X. 2021. 02. 005]
[17]赵红梦,姜志侠*,曾 坤.一种用于公共自行车调度的改进 GA-SA 算法[J].计算机技术与发展,2021,31(10):184.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 031]
 ZHAO Hong-meng,JIANG Zhi-xia*,ZENG Kun.An Improved GA-SA Algorithm for Public Bicycle Scheduling[J].,2021,31(03):184.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 031]

备注/Memo

备注/Memo:
湖南省教育科研基金资助项目(10C1176);湖南省教育科研2011基金资助项目邹腊梅(1977-),女,讲师,硕士,研究方向为计算机网络、数据挖掘、信息检索
更新日期/Last Update: 1900-01-01