[1]曹黎侠.博弈论在数学综合素质培养机制中的应用[J].计算机技术与发展,2012,(02):189-191.
 CAO Li-xia.Game Theory Application in Mathematical Mode of Overall Quality of Cultivation[J].,2012,(02):189-191.
点击复制

博弈论在数学综合素质培养机制中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年02期
页码:
189-191
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Game Theory Application in Mathematical Mode of Overall Quality of Cultivation
文章编号:
1673-629X(2012)02-0189-03
作者:
曹黎侠
西安工业大学理学院
Author(s):
CAO Li-xia
College of Science,Xi'an Technological University
关键词:
博弈论培养机制纳什均衡效益函数
Keywords:
game theory mode of cultivation Nash equilibrium benefit function
分类号:
O225
文献标志码:
A
摘要:
根据大学生数学综合素质培养机制的研究现状,创建了数学综合素质培养机制的"理论与应用均衡模型",为高校数学综合素质培养模式提供科学的定量化的方法。运用博弈均衡理论,建立培养机制模型并给出纯策略纳什均衡解。从定量的角度确定了"理论与应用均衡"的培养机制中理论课与应用课所占课时的最佳比例,以及要使学生的收益最大,学生应该付出的学习时间。通过算法示例及对博弈模型结果的分析,说明了博弈模型的有效性和可操作性
Abstract:
To provide a scientific quantitative approach,according to the research status of overall quality of mathematical training mode,creat a mathematical model of the overall quality of training,"equilibrium theory and applications".Using game's equilibrium theory creat game model and give the pure strategy Nash equilibrium.From a quantitative point of groundbreaking to determine the best proportion of hours about the theory and application of course in the "balance of theory and application" of the training mode,and to make the biggest gains of students,the students should pay for learning time.Through the algorithm example and analysis of the results of the game model,illustrate the effectiveness of the game model and operability

相似文献/References:

[1]李磊 董健全.基于博弈论的P2P激励机制的研究与设计[J].计算机技术与发展,2009,(05):5.
 LI Lei,DONG Jian-quan.Research and Design of An Incentive Mechanism of P2P Based on Game Theory[J].,2009,(02):5.
[2]冯坚 王书田 林日光.一种TCP博弈模型的Nash均衡存在性分析与仿真[J].计算机技术与发展,2009,(11):76.
 FENG Jian,WANG Shu-tian,LIN Ri-guang.Analysis and Simulation to Existence of Nash Equilibria in a TCP Game[J].,2009,(02):76.
[3]张怡 刘高嵩 李章华 刘轲平.基于博弈论的P2P系统分析[J].计算机技术与发展,2007,(08):26.
 ZHANG Yi,LIU Gao-song,LI Zhang-hua,et al.Analysis on P2P System Based on Game Theory[J].,2007,(02):26.
[4]刘冰 万佑红.CDMA系统中基于博弈论的速率与功率联合控制[J].计算机技术与发展,2012,(11):53.
 LIU Bing,WAN You-hong.Joint Control of Rate and Power in CDMA System Based on Game Theory[J].,2012,(02):53.
[5]黄德文,周井泉.基于价格的认知网络频谱共享博弈论模型[J].计算机技术与发展,2013,(08):66.
 HUANG De-wen,ZHOU Jing-quan.Cognitive Network Spectrum Sharing Game Theory Model Based on Price[J].,2013,(02):66.
[6]曹黎侠.地区环境污染的监管模型与流程设计[J].计算机技术与发展,2014,24(04):200.
 CAO Li-xia.Design of Regulation Model and Process of Regional Environmental Pollution[J].,2014,24(02):200.
[7]曹黎侠.博弈均衡理论与算法在人才培养模型中的应用[J].计算机技术与发展,2013,(01):234.
 CAO Li-xia.Application of Game Theory and Algorithm for Talent Training Model[J].,2013,(02):234.
[8]蔡媛媛,曹自平,张金娅.基于博弈论的 ALM 协议改进算法[J].计算机技术与发展,2018,28(05):59.[doi:10.3969/j.issn.1673-629X.2018.05.014]
 CAI Yuan-yuan,CAO Zi-ping,ZHANG Jin-ya.Improved Algorithm of ALM Protocol Based on Game Theory[J].,2018,28(02):59.[doi:10.3969/j.issn.1673-629X.2018.05.014]
[9]刘雪亮,胡晓辉. 一种改进的社会网络动态信任模型[J].计算机技术与发展,2016,26(06):51.
 LIU Xue-liang,HU Xiao-hui. An Improved Dynamic Trust Model in Social Network[J].,2016,26(02):51.
[10]李亚玲. 密集飞蜂窝网中基于博弈论的最佳功率分配法[J].计算机技术与发展,2016,26(10):169.
 LI Ya-ling. Optimal Power Allocation Strategy Based on Stackelberg Game Approach in Dense Femtocell Networks[J].,2016,26(02):169.

备注/Memo

备注/Memo:
陕西省教育科学计划项目自然专项(09JK480); 西安工业大学教学改革研究项目(10JGY28)曹黎侠(1971-),女,陕西西安人,副教授,研究方向为运筹学与控制论、决策分析及优化算法等
更新日期/Last Update: 1900-01-01