[1]王建雄 张立民 钟兆根.基于FastICA算法的盲源分离[J].计算机技术与发展,2011,(12):93-96.
 WANG Jian-xiong,ZHANG Li-min,ZHONG Zhao-gen.Blind Source Separation Based on FastICA Algorithm[J].,2011,(12):93-96.
点击复制

基于FastICA算法的盲源分离()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年12期
页码:
93-96
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Blind Source Separation Based on FastICA Algorithm
文章编号:
1673-629X(2011)12-0093-04
作者:
王建雄 张立民 钟兆根
海军航空工程学院电子信息工程系
Author(s):
WANG Jian-xiong ZHANG Li-min ZHONG Zhao-gen
Dept. of Electronic Information Engineering, Naval Aeronautical Engineering Institute
关键词:
独立成分分析盲源分离主成分分析梯度算法
Keywords:
independent component analysis Mind source separation principal component analysis gradient algorithm
分类号:
TP301.6
文献标志码:
A
摘要:
近年来,ICA(Independent Component Analysis,独立成分分析)已成为处理BSS(Blind Source Separation,盲源分离)问题的主要手段,同时也受到人们越来越多的关注,为此讨论ICA的原理及其优越性。首先介绍ICA,然后引入FastICA算法的推导过程,最后通过MATLAB仿真将其与梯度算法、PCA(Principal Component Analysis,主成分分析)算法所得的仿真结果进行对比分析。通过算法验证,经FastICA处理得到的分离信号与源信号相关系数的绝对值不小于0.99,与其他两种算法比较可以明显地得到FastICA是一种更为有效的盲源分离方法
Abstract:
ICA has been a primary method solving BSS in recent years, and aroused more and more concern, so discuss the principle and superiority. In this paper,introduce ICA and FastICA algorithm firstly,then analyze simulation result by FastICA, gradient algorithm and PCA. Through verification,absolute value of correlation coefficient between separation signals and source signals is not less than 0.99. Compared with other algorithms,conclude FastICA is a more effective algorithm

相似文献/References:

[1]程佳 支小莉 大贝 晴俊.基于无线传感器网络和ICA的桥梁诊断系统[J].计算机技术与发展,2009,(06):1.
 CHENG Jia,ZHI Xiao-li,OGAI Harutoshi.A Bridge Diagnosis System Based on Wireless Sensor Network and Independent Component Analysis[J].,2009,(12):1.
[2]文念,黄丽亚,于涵,等. 基于ICA和聚类的EEG脑源定位研究[J].计算机技术与发展,2015,25(05):228.
 WEN Nian,HUANG Li-ya,YU Han,et al. EEG Sources Localization Based on Independent Component Analysis and Clustering[J].,2015,25(12):228.
[3]曾 坤,姜志侠*.基于多遗传算法的 BP 神经网络人脸识别[J].计算机技术与发展,2021,31(01):77.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 014]
 ZENG Kun,JIANG Zhi-xia*.Face Recognition Based on BP Neural Network with Multiple Genetic Algorithm[J].,2021,31(12):77.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 014]
[4]朱晓雨,曹自平,崔红涛.超声波穿金属无线通信噪声智能抑制方法研究[J].计算机技术与发展,2023,33(09):190.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 028]
 ZHU Xiao-yu,CAO Zi-ping,CUI Hong-tao.Research on Intelligent Noise Suppression Method of Ultrasonic through Metal Wireless Communication[J].,2023,33(12):190.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 028]

备注/Memo

备注/Memo:
国家自然科学基金(61032001,60972159,61002006)王建雄(1987-),男,山西临汾人,硕士研究生,主要研究领域为盲信号处理;张立民,博士,教授,主要研究领域为信号与信息处理
更新日期/Last Update: 1900-01-01