[1]李龙澍 王永 魏博诚.一种基于SFP树的快速关联规则挖掘算法[J].计算机技术与发展,2011,(05):79-82.
 LI Long-shu,WANG Yong,WEI Bo-cheng.A Fast Association Rule Mining Algorithm Based on SFP Tree[J].,2011,(05):79-82.
点击复制

一种基于SFP树的快速关联规则挖掘算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年05期
页码:
79-82
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
A Fast Association Rule Mining Algorithm Based on SFP Tree
文章编号:
1673-629X(2011)05-0079-04
作者:
李龙澍 王永 魏博诚
安徽大学计算机智能与信号处理教育部重点实验室
Author(s):
LI Long-shu WANG Yong WEI Bo-cheng
Ministry of Education Key Laboratory of Intelligent Computing & Signal Processing, Anhui University
关键词:
关联规则频繁项集FP树样本事务数据库
Keywords:
association rule frequent itemsets FP tree sample transaction database
分类号:
TP301.6
文献标志码:
A
摘要:
对于传统的FP—Growth算法而言,当事务数据库D很大时,构造基于内存的FP树可能是不现实的。针对此问题,提出r一种基于样本事务数据库的SFP算法。该方法对事务数据库D进行随机抽样,得到样本数据库s,此时以比指定的支持度min_sup小的支持度(min_sup’)在s中挖掘频繁项集L’,根据求得的频繁项集L’,在剩余的数据库D—S中求得L’中各事务的支持数,这在大多数情况下就可以求得所有的频繁项集,但是有时可能会漏掉一些。这时可以对D进行二次扫描以发现漏掉的频繁项集。该算法大多数情况下只需要对数据库进行一次扫描,最坏情况下也只需要对数据库进行二次扫描。当把效率放在首位时,比如计算密集事务数据库的频繁项集时,SFP算法尤其合适
Abstract:
For the traditional algorithm of FP growth, when database is very big, the structure of FP tree based on memory, sometimes is not realistic. According to this problem, put forward a SFP algorithm based on the sample of the transaction database. This method gets sample transaction database S from database D through random sampling, f'trstly in less than a specified min_sup support, digging fre- quent itemsets L "from S, then calculating L "each element of the support in the rest of the data sets D-S, finally getting L by min_sup. In most cases it can be obtained all the frequent itemsets, but sometimes no. In this time omit the frequent itemsets a second scan. The algorithm needs only one scan of database in most cases, the worst case scenario also needs only second scan to database. When the efficiency is the most important, such as intensive application must be frequently calculated. SFP algorithm is the first selecting

相似文献/References:

[1]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(05):93.
[2]文拯 梁建武 陈英.关联规则算法的研究[J].计算机技术与发展,2009,(05):56.
 WEN Zheng,LIANG Jian-wu,CHEN Ying.Research of Association Rules Algorithm[J].,2009,(05):56.
[3]王晓宇 秦锋 程泽凯 邹洪侠.关联规则挖掘技术的研究与应用[J].计算机技术与发展,2009,(05):220.
 WANG Xiao-yu,QIN Feng,CHENG Ze-kai,et al.Investigation and Application of Association Rules Mining[J].,2009,(05):220.
[4]吕刚[] 郑诚.基于本体的关联规则在电子商务中的应用[J].计算机技术与发展,2009,(06):250.
 LU Gang,ZHENG Cheng.Association Rules with Ontological Information in E- Commerce[J].,2009,(05):250.
[5]郑春香 韩承双.关联规则研究及在远程教育考试系统中的应用[J].计算机技术与发展,2009,(08):186.
 ZHENG Chun-xiang,HAN Cheng-shuang.Research on Association Rule Mining and Application of Long- Distance Education System[J].,2009,(05):186.
[6]郑春香 韩承双 董甲东.关联规则技术在教学评价中的应用[J].计算机技术与发展,2009,(09):215.
 ZHENG Chun-xiang,HAN Cheng-shuang,DONG Jia-dong.Application of Association Rule Mining in Teaching Appraisal[J].,2009,(05):215.
[7]向哲 林国龙 杨斌.兴趣度在增量的关联规则挖掘中的研究[J].计算机技术与发展,2009,(10):33.
 XIANG Zhe,LIN Guo-long,YANG Bin.Interestingness Research of Association Rules in Incremental Mining Data[J].,2009,(05):33.
[8]王敏 刘希玉.Apriori算法在税务系统中的应用[J].计算机技术与发展,2009,(11):175.
 WANG Min,LIU Xi-yu.Application of Apriori Algorithm in Tax System[J].,2009,(05):175.
[9]耿波 仲红 徐杰 闫娜娜.隐私保护的关联规则挖掘研究[J].计算机技术与发展,2009,(02):81.
 GENG Bo,ZHONG Hong,XU Jie,et al.Study on Privacy- Preserving Association Rule Mining[J].,2009,(05):81.
[10]董彩云 刘培华.数据挖掘技术在远程教育教学中的应用[J].计算机技术与发展,2009,(02):179.
 DONG Cai-yun,LIU Pei-hua.Application of Data Mining Technology in Instance Education[J].,2009,(05):179.
[11]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(05):143.
[12]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(05):105.
[13]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(05):84.
[14]陈伟.Apriori算法的优化方法[J].计算机技术与发展,2009,(06):80.
 CHEN Wei.Method of Apriori Algorithm Optimization[J].,2009,(05):80.
[15]王伟 高亮 吴涛.基于遗传算法的长频繁项集挖掘方法[J].计算机技术与发展,2008,(04):19.
 WANG Wei,GAO Liang,WU Tao.A Method of Mining Long Frequent Itemset Based on Genetic Algorithm[J].,2008,(05):19.
[16]吴春阳 何友全.数据挖掘技术及其在旅游线路规划系统的应用[J].计算机技术与发展,2008,(09):235.
 WU Chun-yang,HE You-quan.Application of Association Rule in Data Mining for Tour Planning[J].,2008,(05):235.
[17]冯洁 陶宏才.典型关联规则挖掘算法的分析与比较[J].计算机技术与发展,2007,(03):121.
 FENG Jie,TAO Hong-cai.Analysis and Comparison of Representative Algorithms for Mining Association Rules[J].,2007,(05):121.
[18]程玉胜 邓小光 江效尧.Apriori算法中频繁项集挖掘实现研究[J].计算机技术与发展,2006,(03):58.
 CHENG Yu-sheng,DENG Xiao-guang,JIANG Xiao-yao.Realization of Mining Frequent Itemsets Based on Apriori[J].,2006,(05):58.
[19]胡吉明 鲜学丰.挖掘关联规则中Apriori算法的研究与改进[J].计算机技术与发展,2006,(04):99.
 HU Ji-ming,XIAN Xue-feng.Research and Improvement on Apriori's Algorithm in Mining with Association Rules[J].,2006,(05):99.
[20]陈玉婷 王斌 刘博 宋斌[] 李颉[].关联规则挖掘算法介绍[J].计算机技术与发展,2006,(05):21.
 CHEN Yu-ting,WANG Bin,LIU Bo,et al.Introduction of Mining Association Rules Algorithm[J].,2006,(05):21.

备注/Memo

备注/Memo:
安徽省自然科学基金项目(090412054)李龙澍(1956-),男,安徽毫州人,教授,博士生导师,研究方向为知识工程、软件分析与测试
更新日期/Last Update: 1900-01-01