[1]王友国 刘沁雨.多阈值系统中高斯混合噪声改善信息的传输[J].计算机技术与发展,2011,(04):120-122.
 WANG You-guo,LIU Qin-yu.Gaussian Mixture Noise to Improve Information Transmission in Multi-threshold System[J].,2011,(04):120-122.
点击复制

多阈值系统中高斯混合噪声改善信息的传输()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年04期
页码:
120-122
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Gaussian Mixture Noise to Improve Information Transmission in Multi-threshold System
文章编号:
1673-629X(2011)04-0120-03
作者:
王友国 刘沁雨
南京邮电大学理学院
Author(s):
WANG You-guoLIU Qin-yu
College of Science,Nanjing University of Posts and Telecommunications
关键词:
互信息随机共振阈上随机共振高斯混合噪声
Keywords:
mutual information stochastic resonance supra-threshold stochastic resonance Gaussian mixture noise
分类号:
TP391
文献标志码:
A
摘要:
讨论高斯混合噪声下多阈值系统中的随机共振现象。对于单峰噪声,当输入信号在阈上时,互信息随着噪声的增强单调递减,噪声总是不利于信息的传输;当信号在阈下时,互信息随着噪声的增强先递增然后再递减,适量的噪声能改善信息传输,随机共振现象存在。对于双峰噪声,信号在阈下或阈上,噪声有时能够改善信息的传输,随机共振和阈上随机共振存在。这些结果说明多阈值系统中噪声改善信息的传输依赖于噪声类型,拓广了随机共振和阈上随机共振在多元信息传输中的应用
Abstract:
Stochastic resonance in multi-threshold systems is studied for Gaussian mixture noises.For the single-peak Gaussian mixture noise,when the input signal is supra-threshold,mutual information monotonically decrease as the noise intensity increases,noise always deteriorate information transmission.When the input signal is sub-threshold,mutual information first increase and then decline as the noise intensity increases,some noise can improve information transmission,stochastic resonance(SR) exists.For Bimodal Gaussian mixture noise,when the signal is sub-threshold or supra-threshold,noises sometimes can also improve information transmission,SR and supra-threshold stochastic resonance(SSR) exist.These results indicate that noise in multi-threshold systems to improve information transmission depends on the noise types,and extend the application of SR and SSR in the multi-dimensional information transmission

相似文献/References:

[1]许镇 王洪国 冉玉梅 杨玉会.基于判别模型的垃圾邮件过滤方法[J].计算机技术与发展,2010,(01):177.
 XU Zhen,WANG Hong-guo,RAN Yu-mei,et al.Spam Filter Method Based on Discriminative Model[J].,2010,(04):177.
[2]王友国.基于互信息的多阈值系统中随机谐振现象研究[J].计算机技术与发展,2010,(06):89.
 WANG You-guo,LIU Hong-wei,LUO Ji.Stochastic Resonance in Multi-Threshold Systems Based on Mutual Information[J].,2010,(04):89.
[3]程节华 段汉根.汉语短语识别方法研究[J].计算机技术与发展,2008,(04):67.
 CHENG Jie-hua,DUAN Han-gen.Research on Phrase Chunking Methods[J].,2008,(04):67.
[4]翟利志 王敬东 李鹏.基于邻域信息的红外与可见光图像互信息配准[J].计算机技术与发展,2008,(10):151.
 ZHAI Li-zhi,WANG Jing-dong,LI Peng.Infrared and Visible Light Image Mutual Information Registration Based on Neighborhood Information[J].,2008,(04):151.
[5]邱勤伟 焦贤发 朱良燕.对称二值噪声下线性系统的随机共振[J].计算机技术与发展,2010,(08):239.
 QIU Qin-wei,JIAO Xian-fa,ZHU Liang-yan.Stochastic Resonance in Linear System with Dichotomous Noise[J].,2010,(04):239.
[6]赵国际 李竹林 赵宗涛 张宏[].文本分类技术及在军事情报中的应用[J].计算机技术与发展,2007,(08):176.
 ZHAO Guo-ji,LI Zhu-lin,ZHAO Zong-tao,et al.Technology of Text Classification and Application in Military Intelligence Management[J].,2007,(04):176.
[7]胡逢彬 桂现才.决策表属性约简的相对信息量表示[J].计算机技术与发展,2006,(07):39.
 HU Feng-bin,GUI Xian-cai.Relative Information Quantity Representation for Attribute Reduction of Decision Tables[J].,2006,(04):39.
[8]魏博诚 王爱平 沙先军 王永.一种消除中文分词中交集型歧义的方法[J].计算机技术与发展,2011,(05):60.
 WEI Bo-cheng,WANG Ai-ping,SHA Xian-jun,et al.A Method about Removing Overlapping Ambiguity Producing in Chinese Matching[J].,2011,(04):60.
[9]韩月阳 邓世昆 贾时银 李远方.基于字分类的中文分词的研究[J].计算机技术与发展,2011,(07):29.
 HAN Yue-yang,DENG Shi-kun,JIA Shi-yin,et al.Chinese Word Segmentation Research Based on Classification of Words[J].,2011,(04):29.
[10]姚明海,赵连朋,刘维学.基于特征选择的Bagging分类算法研究[J].计算机技术与发展,2014,24(04):103.
 YAO Ming-hai,ZHAO Lian-peng,LIU Wei-xue.Research on Bagging Classification Algorithm Based on Feature Selection[J].,2014,24(04):103.

备注/Memo

备注/Memo:
江苏省自然科学基金(08KJB510012)王友国(1968-),男,江苏淮安人,教授,硕士生导师,研究方向为信号与信息处理,应用数学
更新日期/Last Update: 1900-01-01