[1]肖强.基于多尺度稀疏LSSVM的时间序列预测[J].计算机技术与发展,2011,(03):117-120.
 XIAO Qiang.Multi-Scale Least Squares Support Vector Machine for Time Series Forecasting[J].,2011,(03):117-120.
点击复制

基于多尺度稀疏LSSVM的时间序列预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年03期
页码:
117-120
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Multi-Scale Least Squares Support Vector Machine for Time Series Forecasting
文章编号:
1673-629X(2011)03-0117-04
作者:
肖强
国核电力规划设计研究院
Author(s):
XIAO Qiang
State Nuclear Electric Power Planning Design & Research Institute
关键词:
多尺度稀疏最小二乘支持向量机小波包分解最小二乘支持向量机金融时间序列时间序列预测
Keywords:
multi-scale least squares support vector machine wavelet package decompositionleast squares support vector machinefinancial time seriestime series prediction
分类号:
TP31
文献标志码:
A
摘要:
最小二乘支持向量机在提高了支持向量机的运算速度的同时,失去了解的稀疏性。构造的多尺度稀疏最小二乘支持向量机,首先通过小波包分解对于数据进行多尺度描述,同时采用最小二乘支持向量机的学习算法获得数据之间的尺度相关性,可以实现解的稀疏性和可解释性,从而实现了系统的多尺度分解、子系统建模与合成的一体化。通过在时间序列预测上的应用可以发现,此模型在获得稀疏解的同时,极大地提高了系统的性能。而且,可以获得输出结果在不同尺度上的贡献度,增加了系统的可解释性
Abstract:
Least squares support vector machine achieves faster speed at the cost of loosing the sparseness. A new method, called multiscale sparse least squares support vector machine, was proposed to obtain the sparseness and interpretability. It was the very core of this method that the multi-scale decomposition, modeling for the sub-systems and the integration is achieved adaptively. The multi-scale decomposition for the original data was obtained by wavelet packet and the correlations among these scales are obtained by the way of learning using multi-scale sparse least square support vector machine. Experiments in time series prediction demonstrate that multi-scale sparse least squares support vector machine can achieve excellent performance and sparseness at one time. In addition, the effect of different scales for the output can be achieved. It improves the interpretability and gives another way for model evaluation

相似文献/References:

[1]张学军[][],等. 基于小波包基与能量熵的MEG自动分类方法[J].计算机技术与发展,2016,26(06):127.
 ZHANG Xue-jun[] [],DING Yu-han[] HUANG Li-ya[][],CHENG Xie-feng[][]. Automatic Classification Method of MEG Based on Wavelet Packet and Energy Entropy[J].,2016,26(03):127.

备注/Memo

备注/Memo:
国核院科研业务专项基金项目(#100-KY2010-FZ-E001)肖强(1980-),男,山东济南人,研究生,工程师,研究方向为人工智能、工程概预算经济分析
更新日期/Last Update: 1900-01-01