[1]王蓓 张欣 刘洪.基于稀疏序列的图像去噪方法及应用[J].计算机技术与发展,2011,(03):113-116.
 WANG Bei,ZHANG Xin,LIU Hong.Image Denoising Based on Sparse Sequences and Its Application[J].,2011,(03):113-116.
点击复制

基于稀疏序列的图像去噪方法及应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年03期
页码:
113-116
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Image Denoising Based on Sparse Sequences and Its Application
文章编号:
1673-629X(2011)03-0113-04
作者:
王蓓 张欣 刘洪
贵州大学计算机科学与信息技术学院
Author(s):
WANG Bei ZHANG Xin LIU Hong
School of Computer Science and Information Technology, Guizhou University
关键词:
稀疏分解自适应峰值信噪比
Keywords:
sparse decomposifionadapfivePSNR
分类号:
TP391.41
文献标志码:
A
摘要:
文中基于图像稀疏分解,根据图像与噪声的稀疏分解不同,提出一种基于非对称原子模型的原子库,通过算法优化,实现对采集的布坯图像进行有效去噪分析,提高去噪图像的PSNR值,且具有更好的视觉效果。将所采集到的布坯数字图像去噪后将背景和缺陷进行分离,才能更有效地将缺陷进行界定,以利后续的相关特征提取。通过实验,与小波类去噪方法对比,文中的学习算法能更好地去除图像噪声,保留图像细节信息,获得更高PSNR值
Abstract:
Base on the image sparse decomposition, according to the different characters of image and noise in sparse decomposition, proposed a model based on asymmetric atomic atoms library ,by algorithm the acquisition of effective de-noising analysis of gray images. Denoising to improve image PSNR values, and has a better visual effect. Will be collected by digital image denoising cloth blank background and the defects after separation in order to more effectively define the defects in order to facilitate the follow-up of the relevant characteristics of extraction. Experimental results show that in comparison with the wavelet based denoising methods, our learning based algorithm has better denoising ability, keep more detail image information and improve the peak signal to noise ratio

相似文献/References:

[1]宋淑娜 李金霞 胡学坤 高尚.一种自适应模糊阈值区间的图像分割方法[J].计算机技术与发展,2010,(05):121.
 SONG Shu-na,LI Jin-xia,HU Xue-kun,et al.A Method of Adaptive Fuzzy Threshold Region for Image Segmentation[J].,2010,(03):121.
[2]董明忠.一种UWB Ad Hoc网络的自适应MAC协议算法与仿真[J].计算机技术与发展,2009,(08):92.
 DONG Ming-zhong.An Adaptive MAC Protocol Algorithm and Simulation Based on UWB Ad Hoc Networks[J].,2009,(03):92.
[3]王树梅 王志成 蔡健.一种基于灰度形态学的小波域边缘检测算法[J].计算机技术与发展,2009,(01):32.
 WANG Shu-mei,WANG Zhi-cheng,CAI Jian.A Novel Edge- Detection Algorithm in Wavelet Gray - Scale Morphology[J].,2009,(03):32.
[4]陈成 杨晨晖 聂文 龚元浩.基于浮游植物图像的模糊算子边缘检测算法[J].计算机技术与发展,2009,(03):22.
 CHEN Cheng,YANG Chen-hui,NIE Wen,et al.Based on Marine Phytoplankton Cells Images of Fuzzy Operator Edge Detection Algorithm[J].,2009,(03):22.
[5]邓秀勤 熊勇.用于图像处理的加权中值滤波算法[J].计算机技术与发展,2009,(03):46.
 DENG Xiu-qin,XIONG Yong.Weighted Median Filter Algorithm for Image Processing[J].,2009,(03):46.
[6]周俊明 胡小龙 彭建伟.功塞监控图形系统中自适应着色处理[J].计算机技术与发展,2008,(04):245.
 ZHOU Jun-ming,HU Xiao-long,PENG Jian-wei.Power-Aware Adaptive Shading for Graphics System[J].,2008,(03):245.
[7]赵纪涛 马莉 王现君 尚光龙.一种自适应的模糊关联规则挖掘算法[J].计算机技术与发展,2008,(05):64.
 ZHAO Ji- tao,MA Li,WANG Xian-jun,et al.An Adaptive Algorithm for Mining Fuzzy Association Rules[J].,2008,(03):64.
[8]陈珂 徐科[].全自动酶免工作站计算机控制系统设计[J].计算机技术与发展,2008,(06):160.
 CHEN Ke,XU Ke.Design of Computer Control System for Automated ELISA Workstation[J].,2008,(03):160.
[9]鲁群 周爱武.双变异算子遗传算法的应用[J].计算机技术与发展,2008,(07):42.
 LU Qun,ZHOU Ai-wu.Application of Genetic Algorithm Based on Dual Mutation[J].,2008,(03):42.
[10]张萍 刘弘.改进的IGA在建筑造型创新设计中的应用[J].计算机技术与发展,2008,(07):250.
 ZHANG Ping,LIU Hong.Improved IGA and Its Application in Construction Creative Design[J].,2008,(03):250.

备注/Memo

备注/Memo:
贵州省自然科学基金(黔科合J字[2009]2130号);贵州大学自然科学基金(贵大自青基合字(2009)026号)王蓓(1977-),女,硕士研究生,研究方向为信号处理
更新日期/Last Update: 1900-01-01