[1]谢林海[] 刘相滨 佟施[].基于步态的身份识别技术[J].计算机技术与发展,2007,(09):106-108.
 XIE Lin-hai,LIU Xiang-bin,TONG Shi.Survey of Gait- Based Identification[J].,2007,(09):106-108.
点击复制

基于步态的身份识别技术()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年09期
页码:
106-108
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Survey of Gait- Based Identification
文章编号:
1673-629X(2007)09-0106-03
作者:
谢林海[13] 刘相滨2 佟施[3]
[1]湖南师范大学物理与信息学院[2]湖南师范大学图像识别与计算机视觉研究所[3]广西交通职业技术学院信息工程系
Author(s):
XIE Lin-hai LIU Xiang-bin TONG Shi
[1]Coll. of Physics & Information, Hunan Normal Univ[2]Inst. of Image Recognition & Computer Vision, Hunan Normal Univ[3]Dept. of Information Eng. , Guangxi Vocational & Technical Coll. of Communications
关键词:
生物特征步态识别特征提取神经网络
Keywords:
biometrics gait recognition feature extraction neural network
分类号:
TP391.41
文献标志码:
A
摘要:
随着信息社会对安全的要求不断提高,利用生物特征进行快速准确的身份识别成了当今的主流。与传统的身份鉴定手段相比,生物特征识别具有无可比拟的优势,特别是步态识别技术,由于其对系统分辨率要求低、远距离识别、非侵犯性和难以隐藏等特点而倍受计算机视觉研究者的关注。对步态识别所涉及的运动检测与跟踪、特征提取、特征处理以及模式识别分别进行了详细论述
Abstract:
With the development of the security requirement of information society, it becomes the mainstream to identify one's identity with biometric today. The biometrics recognition has unexampled advantages compared with previous conventional figure identifying means. And the gait recognition is attached more extensive of its predominance such as unaffection, simple collection, non body- invading, identification from far away, difficult to be disguised and so on. All of these lead the gait recognition becomes more attractive on the vision movement. A comprehensive survey of gait recognition is provided, involving motion detection and tracking, feature extraction, feature process and pattern recognition

相似文献/References:

[1]卢官明,衣美佳. 步态识别关键技术研究[J].计算机技术与发展,2015,25(07):100.
 LU Guan-ming,YI Mei-jia. Research on Critical Techniques in Gait Recognition[J].,2015,25(09):100.
[2]刘 东,胡峻林*.基于度量学习的步态识别比较研究[J].计算机技术与发展,2022,32(09):89.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 014]
 LIU Dong,HU Jun-lin *.Comparative Study of Gait Recognition Based on Metric Learning[J].,2022,32(09):89.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 014]

备注/Memo

备注/Memo:
湖南省自然科学基金资助项目(03JJY6025);湖南省教育厅资助科研项目(06B058)谢林海(1974-),男,湖南祁阳人,硕士研究生,研究方向为数字图像处理、模式识别;刘相滨,博士,教授,研究方向为计算机图形图像处理、模式识别;佟施,副教授,研究方向为多媒体技术、网络教育等
更新日期/Last Update: 1900-01-01