[1]齐平 贾瑞玉 贾兆红 王会颖.用遗传模拟退火算法挖掘特征项权重的研究[J].计算机技术与发展,2007,(02):143-145.
 QI Ping,JIA Rui-yu,JIA Zhao-hong,et al.Using Genetic- Simulated Annealing Algorithm to Find Attribute Weighting[J].,2007,(02):143-145.
点击复制

用遗传模拟退火算法挖掘特征项权重的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年02期
页码:
143-145
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Using Genetic- Simulated Annealing Algorithm to Find Attribute Weighting
文章编号:
1673-629X(2007)02-0143-03
作者:
齐平12 贾瑞玉12 贾兆红12 王会颖12
[1]安徽大学计算机学院[2]安徽大学计算智能与信息处理教育部重点实验室
Author(s):
QI PingJIA Rui-yuJIA Zhao-hongWANG Hui-ying
[1]School of Computer Science, Anhui University[2]Ministry of Education Key Lab, of Intelligent Computing and Signal Processing, Anhui Univ
关键词:
遗传算法模拟退火算法权重范例推理
Keywords:
genetic algorithm genetic - simulated annealing algorithm weighting case - based reasoning
分类号:
TP18
文献标志码:
A
摘要:
能否在范例库中检索和选择出最为相似的范例决定了范例推理系统性能。文中介绍了遗传算法和模拟退火算法,比较了两种算法的特性.提出一种混合遗传模拟退火算法。该算法不但具有强的局部搜索能力.还缩短了搜索时间。将该算法用于发掘范例库上特征权重,理论分析和实验结果表明了这种混合遗传模拟退火算法优于普通的遗传算法
Abstract:
This article introduces two algorithms, genetic algorithm and simulated annealing algorithm, and puts forward one weighting method by using genetic - simulated annealing algorithm. This algorithm not only has the strong partial searching ability,moreover also reducers the .searching time. The theoretical analysis and experimental results show that this method has better performance than other methods, by using this algorithm to find the characteristic weighting of case base

相似文献/References:

[1]冯智明,苏一丹,覃华,等.基于遗传算法的聚类与协同过滤组合推荐算法[J].计算机技术与发展,2014,24(01):35.
 FENG Zhi-ming,SU Yi-dan,QIN Hua,et al.Recommendation Algorithm of Combining Clustering with Collaborative Filtering Based on Genetic Algorithm[J].,2014,24(02):35.
[2]余晓光 严洪森 殷乾坤.基于Flexsim的车间调度优化[J].计算机技术与发展,2010,(03):44.
 YU Xiao-guang,YAN Hong-sen,YIN Qian-kun.Workshops Scheduling Optimization Based on Flexsim Simulation[J].,2010,(02):44.
[3]贺计文 宋承祥 刘弘.基于遗传算法的八数码问题的设计及实现[J].计算机技术与发展,2010,(03):105.
 HE Ji-wen,SONG Cheng-xiang,LIU Hong.Design and Implementation of Eight Puzzle Problem Based on Genetic Algorithms[J].,2010,(02):105.
[4]沈珏萍 庄亚明.基于Agent的二级供应链企业自动谈判研究[J].计算机技术与发展,2010,(03):121.
 SHEN Jue-ping,ZHUANG Ya-ming.A Research for Company Automatic Negotiation in Secondary Supply Chain Based on Agent[J].,2010,(02):121.
[5]张磊 王晓军.基于遗传算法的业务流程测试[J].计算机技术与发展,2010,(03):155.
 ZHANG Lei,WANG Xiao-jun.Test of Business Process Based on Genetic Algorithm[J].,2010,(02):155.
[6]曹道友 程家兴.基于改进的选择算子和交叉算子的遗传算法[J].计算机技术与发展,2010,(02):44.
 CAO Dao-you,CHENG Jia-xing.A Genetic Algorithm Based on Modified Selection Operator and Crossover Operator[J].,2010,(02):44.
[7]范维博 周俊 许正良.应用遗传算法求解第一类装配线平衡问题[J].计算机技术与发展,2010,(02):194.
 FAN Wei-bo,ZHOU Jun,XU Zheng-liang.Appication of Genetic Algorithm to Assembly Line Balancing[J].,2010,(02):194.
[8]熊伟平 曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,(03):9.
 XIONG Wei-ping,ZENG Bi-qing.Studies on Some Bionic Optimization Algorithms[J].,2010,(02):9.
[9]余晓光 严洪森.基于禁忌搜索遗传混合算法的装配线平衡[J].计算机技术与发展,2010,(05):5.
 YU Xiao-guang,YAN Hong-sen.Assembly Line Balancing Based on Tabu Search and Genetic Hybrid Algorithm[J].,2010,(02):5.
[10]黄永聪 张旭[] 吴义纯 吴琦 程家兴.改进的径向基函数网络的研究及应用[J].计算机技术与发展,2010,(05):158.
 HUANG Yong-cong,ZHANG Xu,WU Yi-chun,et al.Research and Application of Improved Genetic Algorithm-Based RBFANN[J].,2010,(02):158.
[11]汪松泉 程家兴.遗传算法和模拟退火算法求解TSP的性能分析[J].计算机技术与发展,2009,(11):97.
 WANG Song-quan,CHENG Jia-xing.Performance Analysis on Solving Problem of TSP by Genetic Algorithm and Simulated Annealing[J].,2009,(02):97.
[12]徐留杰 王击 邹凤娇.基于降低网损和提高可靠性的配电网络重构[J].计算机技术与发展,2009,(02):193.
 XU Liu-jie,WANG Ji,ZOU Feng-jiao.Distribution Network Reconfiguration for Power Loss Reduction and System Reliability Improvement[J].,2009,(02):193.
[13]贾丽会 张修如.BP算法分析与改进[J].计算机技术与发展,2006,(10):101.
 JIA Li-hui,ZHANG Xiu-ru.Analysis and Improvements of BP Algorithm[J].,2006,(02):101.
[14]邹腊梅 龚向坚.基于混合模拟退火-遗传算法和HMM的Web挖掘[J].计算机技术与发展,2012,(03):106.
 ZOU La-mei,GONG Xiang-jian.Web Mining Based on Hybrid Simulated Annealing Genetic Algorithm and HMM[J].,2012,(02):106.
[15]凌 静,江凌云,赵 迎.结合模拟退火算法的遗传 K-Means 聚类方法[J].计算机技术与发展,2019,29(09):61.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 012]
 LING Jing,JIANG Ling-yun,ZHAO Ying.A Genetic K-Means Clustering Method Combined with Simulated Annealing Algorithm[J].,2019,29(02):61.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 012]
[16]邵可南,吕成瑶,张帅帅,等.一种基于冷链低碳物流路径的混合优化算法[J].计算机技术与发展,2021,31(02):27.[doi:10. 3969 / j. issn. 1673-629X. 2021. 02. 005]
 SHAO Ke-nan,LYU Cheng-yao,ZHANG Shuai-shuai,et al.A Hybrid Optimization Algorithm Based on Low-carbon Cold Chain Logistic Route[J].,2021,31(02):27.[doi:10. 3969 / j. issn. 1673-629X. 2021. 02. 005]
[17]赵红梦,姜志侠*,曾 坤.一种用于公共自行车调度的改进 GA-SA 算法[J].计算机技术与发展,2021,31(10):184.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 031]
 ZHAO Hong-meng,JIANG Zhi-xia*,ZENG Kun.An Improved GA-SA Algorithm for Public Bicycle Scheduling[J].,2021,31(02):184.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 031]

备注/Memo

备注/Memo:
安徽省教育厅科研项目(2005kj055;2005kj056)齐平(1981-),男,安徽枞阳人,硕士研究生,研究方向为机器学习、知识发现;贾瑞玉,副教授,硕士生导师,研究方向为专家系统、神经网络、知识发现
更新日期/Last Update: 1900-01-01