[1]胡为成 胡学钢.基于遗传算法的朴素贝叶斯分类[J].计算机技术与发展,2007,(01):30-32.
 HU Wei-cheng,HU Xue-gang.Naive Bayes Classification Based on Genetic Algorithms[J].,2007,(01):30-32.
点击复制

基于遗传算法的朴素贝叶斯分类()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年01期
页码:
30-32
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Naive Bayes Classification Based on Genetic Algorithms
文章编号:
1673-629X(2007)01-0030-03
作者:
胡为成12 胡学钢1
[1]合肥工业大学计算机学院[2]铜陵学院计算机系
Author(s):
HU Wei-cheng HU Xue-gang
[1]College of Computer Science, Hefei Technology University[2]Department of Computer Science, Tongling College
关键词:
数据挖掘朴素贝叶斯遗传算法属性约简适应度函数
Keywords:
data mining Naive Bayes genetic algorithms feature reduction fitness function
分类号:
TP301
文献标志码:
A
摘要:
朴素贝叶斯分类器是一种简单而高效的分类器,但是其属性独立性假设限制了对实际数据的应用。提出一种新的算法,该算法为避免数据预处理时,训练集的噪声及数据规模使属性约简的效果不太理想,并进而影响分类效果,在训练集上通过随机属性选取生成若干属性子集,并以这些子集构建相应的贝叶斯分类器,进而采用遗传算法进行优选。实验表明,与传统的朴素贝叶斯方法相比,该方法具有更好的分类精度
Abstract:
Naive Bayes classifier is a simple and effective classification method, but its attribute independence assumption makes it unable to express the dependence among attributes in the real world. To avoid the direct influence of feature reduction from data pre - processing on the performance of classification, a new algorithm is introduced in this paper. It makes use of random feature selection to generate several feature subsets from the whole training set, and constructs Bayesian classifiers with the feature subsets, and then optimizes the Bayesian classifiers by using genetic algorithms. Compared with the traditional Naive Bayes methods , the algorithm has better classification precision

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(01):120.
[2]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(01):235.
[3]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(01):114.
[4]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(01):229.
[5]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(01):143.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(01):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(01):105.
[8]赵敏 倪志伟 刘斌.K—means与朴素贝叶斯在商务智能中的应用[J].计算机技术与发展,2010,(04):179.
 ZHAO Min,NI Zhi-wei,LIU Bin.Application Research of K - Means Clustering and Naive Bayesian Algorithm in Business Intelligence[J].,2010,(01):179.
[9]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(01):84.
[10]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(01):109.

备注/Memo

备注/Memo:
安徽省高等学校自然科学研究重点项目(2006kj027A)胡为成(1975-),男,安徽桐城人,讲师,硕士研究生,主要研究方向为数据挖掘、遗传程序设计等;胡学钢,教授,硕士生导师,主要从事数据挖掘、概念格等方向研究
更新日期/Last Update: 1900-01-01