[1]李坤 褚蕾蕾 朱世东 吴小培.基于mu节律能量的运动意识分类研究[J].计算机技术与发展,2006,(08):157-158.
 LI Kun,CHU Lei-lei,ZHU Shi-dong,et al.Study of Classification of Motor Imageries Based on Energy of mu Rhythm of EEG[J].,2006,(08):157-158.
点击复制

基于mu节律能量的运动意识分类研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年08期
页码:
157-158
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Study of Classification of Motor Imageries Based on Energy of mu Rhythm of EEG
文章编号:
1673-629X(2006)08-0157-02
作者:
李坤1 褚蕾蕾2 朱世东1 吴小培1
[1]安徽大学计算智能与信号处理重点实验室[2]淮北煤炭师范学院物理系
Author(s):
LI Kun CHU Lei-lei ZHU Shi-dong WU Xiao-pei
[1]Key Lab. of Intelligent Computing and Signal Processing,Anhui University[2]Department of Physics,Huaibei Coalindustry Teachers College
关键词:
nm节律脑机接口脑电运动想象特征提取分类
Keywords:
mu rhythmbrain-computer interfaceEEGmotor imageryfeature extractionclassification
分类号:
TP18
文献标志码:
A
摘要:
基于脑电(EEG)的脑机接口(BCI)是在人脑和计算机或其它电子设备之间建立不依赖于常规大脑信息输出通路(外周神经和肌肉组织)的全新对外信息交流和控制技术。文中提出了基于mu节律能量为脑电特征的意识任务分类思想,对被测试者想象左右手运动的脑电nm节律能量(二阶矩)及其动态变化情况进行研究。实验结果表明,基于nm节律能量的想象左右手运动意识识别和分类的正确识别率可达85%。二阶矩计算简单,而且可在线计算,故可以认为,基于nm节律能量为脑电特征的意识任务分类在脑机接口的应用中有较高的实用价值
Abstract:
The EEG-based brain-computer interface (BCI) is a novel technology, which provides a wholly new channel between the computer and eleetronic equipments instead of the normal output pathways of peripheral nerves and muscles. In this paper, the classification of rnental activities based on energy of mu rhythm was proposed. The EEG signals were recorded during imagination of left or right hand movement. The energy of mu rhythm (2nd order moment) and its dynamic properties with respect to time were analyzed. According to the analysis and experiment results,the classification of left or right hand movement imagination based on energy of mu rhythm is designed. The correct rate of classification can achieve 85 %. Since the computation of 2nd order moment is very simple and can also be estimated in on-llne way, the new method has the practicability in the application of brain-computer interface technique

相似文献/References:

[1]王璐 吴小培 高湘萍.四类运动想象任务的脑电特征分析及分类[J].计算机技术与发展,2008,(10):23.
 WANG Lu,WU Xiao-pei,GAO Xiang-ping.Analysis and Classification of Four- Class Motor Imagery EEG Data[J].,2008,(08):23.
[2]石锐 何相锦 何庆华.基于DirectShow的脑机接口图像视觉刺激器[J].计算机技术与发展,2010,(12):197.
 SHI Rui,HE Xiang-jin,HE Qing-hua.Images Visual Stimulator for Brain-Computer Interface Based on DirectShow[J].,2010,(08):197.
[3]陈悦,张少白.LM算法在神经网络脑电信号分类中的研究[J].计算机技术与发展,2013,(02):119.
 CHEN Yue,ZHANG Shao-bai.Research on EEG Classification with Neural Networks Based on Levenberg-Marquardt Algorithm[J].,2013,(08):119.

备注/Memo

备注/Memo:
国家自然科学基金项目(60271024);安徽省人才资助基金项目(20042028)李坤(1982-),男,安徽合肥人,硕士研究生,研究方向为现代信号处理 吴小培,教授,博士生导师,研究方向为现代信号处理
更新日期/Last Update: 1900-01-01