[1]陶秀凤 周鸣争.基于支持向量机的多传感器信息融合算法[J].计算机技术与发展,2006,(06):177-179.
 TAO Xiu-feng,ZHOU Ming-zheng.An Algorithm of Multiple Sensor Information Fusion Based on SVM[J].,2006,(06):177-179.
点击复制

基于支持向量机的多传感器信息融合算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年06期
页码:
177-179
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
An Algorithm of Multiple Sensor Information Fusion Based on SVM
文章编号:
1673-629X(2006)06-0177-03
作者:
陶秀凤 周鸣争
安徽工程科技学院电气工程系
Author(s):
TAO Xiu-feng ZHOU Ming-zheng
Dept. of Electrical Eng., Anhui University of Technology and Science
关键词:
支持向量机传感器信息融合水份测量
Keywords:
SVM sensor information fusion moisture measurement
分类号:
TP301.6
文献标志码:
A
摘要:
支持向量机(Support Vector Machine,S、M)是一种基于结构风险最小化原理,具有很高泛化性能的学习算法。针对工业多传感器测控系统中,被测系数与相关参数之间存在有较大的非线性和模糊关系,提出了一种基于支持SVM的多传感器信息融合模型及算法。为小样本、非线性、高维数一类多传感器信息融合问题的建模提供了一种有效的途径。通过对“纸张水份在线测量系统”应用表明,基于SVM的多传感器信息融合模型及算法在测量精度和推广性能上都具有一定的优越性
Abstract:
The support vector machine(SVM) is an algorithm based on structure risk minimizing principle, having high generalization ability. In the course of multiple sensor information fusion of industrial control, sensor has bigger nonlinearity aand fuzzy relation between coefficient and relevant parameter. A kind of model and algorithm of multiple sensor information fusion based on the support vector machine are proposed. The model offered a kind of effective way for little sample, non- linear, high dimension. Through use to"paper moisture content online measuring system", the model and algorithm have certain superiority in measuring precision and performance of popularization

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(06):125.
[2]陈俏 曹根牛 陈柳.支持向量机应用于大气污染物浓度预测[J].计算机技术与发展,2010,(01):247.
 CHEN Qiao,CAO Gen-niu,CHEN Liu.Application of Support Vector Machine to Atmospheric Pollution Prediction[J].,2010,(06):247.
[3]李晶 姚明海.基于支持向量机的语义图像分类研究[J].计算机技术与发展,2010,(02):75.
 LI Jing,YAO Ming-hai.Research of Semantic Image Classification Based on Support Vector Machine[J].,2010,(06):75.
[4]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(06):17.
[5]曹庆璞 董淑福 罗赟骞.网络时延的混沌特性分析及预测[J].计算机技术与发展,2010,(04):43.
 CAO Qing-pu,DONG Shu-fu,LUO Yun-qian.Chaotic Analysis and Prediction of Internet Time- Delay[J].,2010,(06):43.
[6]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(06):84.
[7]刘记.教育服务网格监控系统的研究与设计[J].计算机技术与发展,2010,(05):67.
 LIU Ji.Research and Design of Monitoring System about Education Service Grid[J].,2010,(06):67.
[8]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(06):21.
[9]孙秋凤.microRNA计算识别中的模式识别技术[J].计算机技术与发展,2010,(06):97.
 SUN Qiu-feng.Pattern Recognition Technology for MicroRNA Identification[J].,2010,(06):97.
[10]刘振岩 王勇 陈立平 马俊杰 陈天恩.基于SVM的农业智能决策Web服务的研究与实现[J].计算机技术与发展,2010,(06):213.
 LIU Zhen-yan,WANG Yong,CHEN Li-ping,et al.Research and Implementation of Intelligence Decision Web Services Based on SVM for Digital Agriculture[J].,2010,(06):213.

备注/Memo

备注/Memo:
安徽省教育厅自然科学基金资助项目(2004kj033zd)陶秀凤(1956-),女,江苏人,实验师,研究方向为信息融合与智能控制
更新日期/Last Update: 1900-01-01