[1]姚亮亮,张太红*,张洋宁,等.单参数通道注意力模块[J].计算机技术与发展,2023,33(12):215-220.[doi:10. 3969 / j. issn. 1673-629X. 2023. 12. 030]
 YAO Liang-liang,ZHANG Tai-hong*,ZHANG Yang-ning,et al.Single-parameter Channel Attention Module[J].,2023,33(12):215-220.[doi:10. 3969 / j. issn. 1673-629X. 2023. 12. 030]
点击复制

单参数通道注意力模块()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年12期
页码:
215-220
栏目:
人工智能
出版日期:
2023-12-10

文章信息/Info

Title:
Single-parameter Channel Attention Module
文章编号:
1673-629X(2023)12-0215-06
作者:
姚亮亮123 张太红123* 张洋宁123 温钊发123
1. 新疆农业大学 计算机与信息工程学院,新疆 乌鲁木齐 830052;
2. 智能农业教育部工程研究中心,新疆 乌鲁木齐 830052;
3. 新疆农业信息化工程技术研究中心,新疆 乌鲁木齐 830052
Author(s):
YAO Liang-liang123 ZHANG Tai-hong123* ZHANG Yang-ning123 WEN Zhao-fa123
1. School of Computer and Information Engineering,Xinjiang Agricultural University,Urumqi 830052,China;
2. Intelligent Agriculture Ministry of Education Engineering Research Center,Urumqi 830052,China;
3. Xinjiang Agricultural Information Engineering Technology Research Center,Urumqi 830052,China
关键词:
卷积神经网络深度学习通道注意力图像分类计算量
Keywords:
convolutional neural networkdeep learningchannel attentionimage classificationamount of calculation
分类号:
TP18
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 12. 030
摘要:
随着深度学习的发展,通道注意力在卷积神经网络上的表征能力上发挥了巨大的作用。 为了进一步加强通道注意力模块在深度神经网络中的作用,针对通道注意力的参数量方面,提出了一
种单参数通道注意力( APA) 模块。 首先,APA 模块在图像通道特征的求和向量上加单参数。 然后,通过度量通道向量和求和向量在方向上的关系,求取通道注意力权重。 最后,经过激活函数(Sigmoid) 激活注意力权重,使其分布更平稳。 与其他通道注意力模块相比,该模块只有微量参数,且该模块的代码实现非常简单。 在数据集 CIFAR-10 与 CIFAR-100 上,使用 APA 模块嵌入
到 MobileNet,ResNet系列主干,与同类方法压缩激励模块( SE) 、有效的通道注意力模块( ECA)进行了实验对比,验证了 APA 模块的有效性。
Abstract:
With the development of deep learning,channel attention has played a huge role in the representation ability of convolutionalneural networks. In order to further strengthen the role of channel attention module in deep neural network,a single parameter channel attention ( APA) module is proposed for the parameter quantity of channel attention. First,the APA module adds a single parameter to theimage channel feature summation vector. Then, the channel attention weight is obtained by measuring the relationship between thechannel vector and the summation vector in the direction. Finally,the attention weight is activated by the activation function (Sigmoid)to make its distribution more stable. Compared with other channel attention modules,the proposed module has only trace parameters,andthe code implementation of the module is largely simple. By embedding the APA module into the MobileNet and ResNet seriesbackbones on the data sets CIFAR-10 and CIFAR-100,it is compared with the similar method Squeeze-and-Excitation module ( SE)and Effective Channel Attention Module ( ECA) which shows the effectiveness of the APA module.

相似文献/References:

[1]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].,2018,28(12):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[2]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].,2016,26(12):31.
[3]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(12):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[4]郭子琰,舒心,刘常燕,等.基于ReLU 函数的卷积神经网络的花卉识别算法[J].计算机技术与发展,2018,28(05):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
 GUO Ziyan,SHU Xin,LIU Changyan,et al.A Recognition Algorithm of Flower Based on Convolution Neural Network with ReLU Function[J].,2018,28(12):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
[5]缪宇杰,吴智钧,宫 婧.基于3D 卷积的视频错帧筛选方法[J].计算机技术与发展,2018,28(05):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
 MIAO Yu-jie,WU Zhi-jun,GONG Jing.A Wrong Temporal-order Frames Identification Method Based on 3D Convolution[J].,2018,28(12):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
[6]吴玉枝,吴志红,熊运余.基于卷积神经网络的小样本车辆检测与识别[J].计算机技术与发展,2018,28(06):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
 WU Yu-zhi,WU Zhi-hong,XIONG Yun-yu.Vehicle Detection and Recognition of a Few Samples Based on Convolutional Neural Network[J].,2018,28(12):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
[7]李相桥,李晨,田丽华,等.卷积神经网络并行训练的优化研究[J].计算机技术与发展,2018,28(08):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
 LI Xiang-qiao,LI Chen,TIAN Li-hua,et al.Research on Optimization of Parallel Training for Convolution Neural Network[J].,2018,28(12):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
[8]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(12):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[9]邓宗平,赵启军,陈虎. 基于深度学习的人脸姿态分类方法[J].计算机技术与发展,2016,26(07):11.
 DEND Zong-ping,ZHAO Qi-jun,CHEN Hu. Face Pose Classification Method Based on Deep Learning[J].,2016,26(12):11.
[10]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(12):19.
[11]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(12):7.
[12]曲之琳,胡晓飞.基于改进激活函数的卷积神经网络研究[J].计算机技术与发展,2017,27(12):77.[doi:10.3969/ j. issn.1673-629X.2017.12.017]
 QU Zhi-lin,HU Xiao-fei.Research on Convolutional Neural Network Based on Improved Activation Function[J].,2017,27(12):77.[doi:10.3969/ j. issn.1673-629X.2017.12.017]
[13]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(12):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[14]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(12):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[15]阮航,王立春.基于特征图的车辆检测和分类[J].计算机技术与发展,2018,28(11):39.[doi:10.3969/ j. issn.1673-629X.2018.11.009]
 RUAN Hang,WANG Li-chun.Vehicle Detection and Classification Based on Feature Map[J].,2018,28(12):39.[doi:10.3969/ j. issn.1673-629X.2018.11.009]
[16]刘华春.卷积神经网络在车牌识别中的应用研究[J].计算机技术与发展,2019,29(04):128.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 026]
 LIU Hua-chun.Research on Application of Convolutional Neural Network in License Plate Recognition[J].,2019,29(12):128.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 026]
[17]倪申龙,曾接贤,周世健.整体车牌图像超分辨率重建研究[J].计算机技术与发展,2019,29(04):195.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 039]
 NI Shen-long,ZENG Jie-xian,ZHOU Shi-jian.Study on Reconstruction of Overall Image of License Plate[J].,2019,29(12):195.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 039]
[18]王山海,刘谦,马鑫鑫.基于图像识别的人工影响天气业务的研究[J].计算机技术与发展,2019,29(05):172.[doi:10. 3969 / j. issn. 1673-629X. 2019. 05. 036]
 WANG Shan-hai,LIU Qian,MA Xin-xin.Research on Weather Modification Based on Image Recognition[J].,2019,29(12):172.[doi:10. 3969 / j. issn. 1673-629X. 2019. 05. 036]
[19]刘华春,侯向宁.采用视觉显著性和卷积网络的车牌定位算法[J].计算机技术与发展,2019,29(06):74.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 016]
 LIU Hua-chun,HOU Xiang-ning.A License Plate Location Algorithm Using Visual Saliency and Convolutional Network[J].,2019,29(12):74.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 016]
[20]黄 鹤,荆晓远,董西伟,等.基于 Skip-gram 的 CNNs 文本邮件分类模型[J].计算机技术与发展,2019,29(06):143.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 030]
 HUANG He,JING Xiao-yuan,DONG Xi-wei,et al.CNNs-Highway Text Message Classification Model Based on Skip-gram[J].,2019,29(12):143.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 030]

更新日期/Last Update: 2023-12-10