[1]吴 杰,姜宜鑫*,韩国敬,等.一种基于变分推断的可评判推荐算法[J].计算机技术与发展,2023,33(10):150-156.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 023]
 WU Jie,JIANG Yi-xin*,HAN Guo-jing,et al.A Critiquing Recommendation Algorithm Based on Variational Inference[J].,2023,33(10):150-156.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 023]
点击复制

一种基于变分推断的可评判推荐算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年10期
页码:
150-156
栏目:
人工智能
出版日期:
2023-10-10

文章信息/Info

Title:
A Critiquing Recommendation Algorithm Based on Variational Inference
文章编号:
1673-629X(2023)10-0150-07
作者:
吴 杰1 姜宜鑫1* 韩国敬2 马 驰3
1. 辽宁科技大学 计算机与软件工程学院,辽宁 鞍山 114051;
2. 鞍山市气象局,辽宁 鞍山 114004;
3. 惠州学院 计算机科学与工程学院,广东 惠州 516007
Author(s):
WU Jie1 JIANG Yi-xin1* HAN Guo-jing2 MA Chi3
1. School of Computer and Software Engineering,University of Science and Technology Liaoning,Anshan 114051,China;
2. Anshan Meteorological Bureau,Anshan 114004,China;3. School of Computer Science and Engineering,Huizhou University,Huizhou 516007,China
关键词:
推荐算法变分推断神经协同过滤可评判可解释性
Keywords:
recommendation algorithmvariational inferenceneural collaborative filteringcritiquinginterpretability
分类号:
TP301
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 10. 023
摘要:
随着互联网时代的不断发展,互联网上的信息量不断增多,“ 信息过载” 等相关问题愈发严重,从而导致用户很难快速地获取到有用的信息,因此推荐系统应运而生。推荐系
统可以预测用户的需求并推荐给用户其最可能喜欢的内容,来缓解人们从海量信息中做出选择的烦恼。 推荐算法是推荐系统的核心,它完全可以决定一个推荐系统的性能。 推荐准确度及可解释性是推荐算法目前面临的两大难题。 可评判推荐算法是对话推荐算法的一种,在预测出项目的同时,也及时给出推荐项目的理由,并且为用户提
供一个重新推荐的机会,用户通过对解释项进行评判来使推荐系统重新预测出商品,可有效解决上述两个问题。 该文首先基于变分推断与神经协同过滤相结合的思想,对算法和模型进行了形式化的定义和理论推导,并且从概率的角度出发使用贝叶斯神经网络实现了该模型。 通过与其他可评判推荐算法进行实验对比,证实了该模型的许多推荐指标已经达到了目前最先进的水平。
Abstract:
With the continuous development of the Internet era,the amount of information on the Internet is increasing,and the relatedproblems such as " information overload" are becoming more and more serious,which makes it difficult for users to quickly obtain usefulinformation. Therefore, the recommendation system comes into being. Recommendation systems can predict users’ needs andrecommend what they are most likely to like,relieving people of the annoyance of choosing from a vast amount of information. Recommendation algorithm is the core of recommendation system,which can determine the performance of a recommendation system. Recommendation accuracy and interpretability are two major problems facing recommendation algorithms at present. Evaluable recommendationalgorithm is a kind?
of dialogue recommendation algorithm. While predicting the items,it also gives reasons for the recommended items intime,and provides users with an opportunity to?
re- recommend. Users can make the recommendation system re - predict the goods byjudging the explanatory items,which can effectively solve the above two problems. Based on the idea of combining variational inferenceand neural collaborative filtering,we firstly formalize the definition and theoretical derivation of the algorithm and model,and then realizethe model from the perspective of probability by using Bayesian neural network. Through the experimental comparison with otherevaluable recommendation algorithms,it is confirmed that many recommendation indexes of this model have reached the most advancedlevel.

相似文献/References:

[1]李克潮,蓝冬梅.一种属性和评分的协同过滤混合推荐算法[J].计算机技术与发展,2013,(07):116.
 LI Ke-chao,LAN Dong-mei.A Collaborative Filtering Hybrid Recommendation Algorithm for Attribute and Rating[J].,2013,(10):116.
[2]王全民,王莉,曹建奇. 基于评论挖掘的改进的协同过滤推荐算法[J].计算机技术与发展,2015,25(10):24.
 WANG Quan-min,WANG Li,CAO Jian-qi. Improved Collaborative Filtering Recommendation Algorithm Based on Comments Mining[J].,2015,25(10):24.
[3]李远博,曹菡. 基于PCA降维的协同过滤推荐算法[J].计算机技术与发展,2016,26(02):26.
 LI Yuan-bo,CAO Han. Collaborative Filtering Recommendation Algorithm Based on PCA Dimension Reduction[J].,2016,26(10):26.
[4]张春生[],图雅[],翁慧[],等. 基于电子商务同类商品的推荐算法研究[J].计算机技术与发展,2016,26(05):17.
 ZHANG Chun-sheng[],TU Ya[],WENG Hui[],et al. Research on Similar Products Recommendation Algorithm Based on Electronic Commerce[J].,2016,26(10):17.
[5]房旋[],陈升波[],宫婧[][],等. 基于社交影响力的推荐算法[J].计算机技术与发展,2016,26(06):31.
 FANG Xuan[],CHEN Sheng-bo[],GONG Jing[][],et al. A Recommendation Algorithm Based on Social Influence[J].,2016,26(10):31.
[6]蒋宗礼,王威,陆晨. 基于均值预估的协同过滤推荐算法改进[J].计算机技术与发展,2017,27(05):1.
 JIANG Zong-li,WANG Wei,LU Chen. 基于均值预估的协同过滤推荐算法改进[J].,2017,27(10):1.
[7]许德心,李玲娟.基于 Spark 的关联规则挖掘算法并行化研究[J].计算机技术与发展,2019,29(03):30.[doi:10.3969/ j. issn.1673-629X.2019.03.006]
 XU De-xin,LI Ling-juan.Research on Parallelization of Association Rules Mining Algorithm Based on Spark[J].,2019,29(10):30.[doi:10.3969/ j. issn.1673-629X.2019.03.006]
[8]史 伟,张青云,李 帅.基于 LBS 的停车位共享平台设计[J].计算机技术与发展,2019,29(11):149.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 030]
 SHI Wei,ZHANG Qing-yun,LI Shuai.Design of Sharing Platform for Parking Spaces Based on LBS[J].,2019,29(10):149.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 030]
[9]康嘉钰,苏凡军.基于生成对抗网络的长短兴趣推荐模型[J].计算机技术与发展,2020,30(06):35.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 007]
 KANG Jia-yu,SU Fan-jun.A Long-short-term Interests Recommendation Model Based on Generative Adversarial Networks[J].,2020,30(10):35.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 007]
[10]刘 旭,李玲娟.基于项目聚类和时间衰减的动态协同过滤算法[J].计算机技术与发展,2020,30(08):22.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 004]
 LIU Xu,LI Ling-juan.Dynamic Collaborative Filtering Algorithm Based on Item Clustering and Time Decay[J].,2020,30(10):22.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 004]

更新日期/Last Update: 2023-10-10