[1]石雁航,孙 颖,陈思光.基于智能反射面的无人机工作模式调整研究[J].计算机技术与发展,2023,33(06):101-108.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 016]
 SHI Yan-hang,SUN Ying,CHEN Si-guang.UAV-assisted Communication Working Mode Adjustment Based onIntelligent Reflective Surface[J].,2023,33(06):101-108.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 016]
点击复制

基于智能反射面的无人机工作模式调整研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年06期
页码:
101-108
栏目:
移到与物联网络
出版日期:
2023-06-10

文章信息/Info

Title:
UAV-assisted Communication Working Mode Adjustment Based onIntelligent Reflective Surface
文章编号:
1673-629X(2023)06-0101-08
作者:
石雁航孙 颖陈思光
南京邮电大学 物联网学院,江苏 南京 210003
Author(s):
SHI Yan-hangSUN YingCHEN Si-guang
School of Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
无人机智能反射面经济效率工作模式调整无线传感器网络
Keywords:
unmanned aerial vehicleintelligent reflective surfaceeconomic efficiencyworking mode adjustment wireless sensor networks
分类号:
TP393
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 06. 016
摘要:
由于复杂的通信环境,空地网络的视线传输可能会受阻,严重影响通信质量。 可重构智能反射面是通过可重构无源单元改善无线环境的一种有前途的解决方案。 基于此,研究了一种新的智能反射面辅助空地通信场景,通过优化智能反射面相移以及联合优化系统吞吐量和无人机能耗,提出基于智能反射面辅助的无人机工作模式自适应算法。 首先,考虑了基于无人机-智能反射面信道以及智能反射面-地面节点的信道模型,并对静态模式以及巡航模式下无人机工作周期等参数进行设计;然后,通过优化智能反射面相移最大化系统吞吐量,然而由于最大化吞吐量以及最小化能耗的目标是相悖的,基于此规划了无人机经济效率最大化问题;最后,通过最大化经济效率,达到对无人机工作模式进行自适应性调整的目的。 与传统方法相比,该算法在经济效率方面可以获得较大的性能提升。
Abstract:
Due to the complex communication environment,the line-of-sight transmission of the air-ground networks may be obstructed,which seriously affects the communication quality.?
Reconfigurable intelligent reflective surface ( IRS) is a promising solution to improvethe wireless environment through reconfigurable passive units. Based on this,a new IRS-assisted?
air-ground communication scenario isstudied,and an IRS - assisted unmanned aerial vehicle ( UAV) working mode adjustment algorithm is proposed. The channel modelsbased on?
UAV-IRS channel and IRS-ground node are first considered,and parameters such as UAV operating period in static mode andcruise mode are designed. Then,the system throughput is maximized by optimizing the IRS phase shift. However,since the objectives ofmaximizing throughput as well as minimizing energy consumption are contradictory, based on this, an UAV economic efficiencymaximization problem is formulated. Finally,by maximizing economic efficiency,the self-adapting adjustment purpose of UAV workingmode is achieved. The proposed algorithm can obtain higher performance improvement in terms of economic efficiency compared to theconventional methods.

相似文献/References:

[1]张晓军,陆兴华.加入不确定扰动的无人机飞行轨迹跟踪控制[J].计算机技术与发展,2018,28(01):182.[doi:10.3969/ j. issn.1673-629X.2018.01.039]
 ZHANG Xiao-jun,LU Xing-hua.Flight Trajectory Tracking Control Algorithm for Unmanned AerialVehicle with Uncertain Disturbance[J].,2018,28(06):182.[doi:10.3969/ j. issn.1673-629X.2018.01.039]
[2]王俊明,曹科才,肖斌,等. 基于Paparazzi Lisa/M2.0的无人机自主飞行设计[J].计算机技术与发展,2016,26(05):197.
 WANG Jun-ming,CAO Ke-cai,XIAO Bin,et al. Design of Autonomous Flight for UAV Based on Paparazzi Lisa/M2.0[J].,2016,26(06):197.
[3]陆兴华. 采用波束域加权的大迎角飞行姿态控制算法[J].计算机技术与发展,2017,27(01):117.
 LU Xing-hua. High Angle of Attack Flight Attitude Control Algorithm Based on Beam Domain Weighting[J].,2017,27(06):117.
[4]陆兴华.基于波束空间二维谱峰搜索的无人机控制算法[J].计算机技术与发展,2017,27(12):52.[doi:10.3969/ j. issn.1673-629X.2017.12.012]
 LU Xing-hua.Unmanned Aerial Vehicle Control Algorithm Based on Two Dimensional Spectrum Peak Searching for Beam Space[J].,2017,27(06):52.[doi:10.3969/ j. issn.1673-629X.2017.12.012]
[5]陶晓力,武 建,杨 坤.基于无人机视觉的桥梁裂缝检测[J].计算机技术与发展,2018,28(03):174.[doi:10.3969/ j. issn.1673-629X.2018.03.037]
 TAO Xiao-li,WU Jian,YANG Kun.Bridge Crack Detection Based on Unmanned Aerial Vehicle Vision[J].,2018,28(06):174.[doi:10.3969/ j. issn.1673-629X.2018.03.037]
[6]张晨,刘宁钟.基于无人机视觉的道路违法搭建检测[J].计算机技术与发展,2018,28(07):140.[doi:10.3969/ j. issn.1673-629X.2018.07.030]
 ZHANG Chen,LIU Ning-zhong.llegal Construction Detection of Road Based on Unmanned Aerial Vehicle Vision[J].,2018,28(06):140.[doi:10.3969/ j. issn.1673-629X.2018.07.030]
[7]王立春,刘宁钟,李强懿.基于无人机航拍图像的公路标线检测算法[J].计算机技术与发展,2018,28(09):138.[doi:10.3969/ j. issn.1673-629X.2018.09.028]
 WANG Li-chun,LIU Ning-zhong,LI Qiang-yi.A Road Markings Detection Algorithm Based on Aerial Image of UAV[J].,2018,28(06):138.[doi:10.3969/ j. issn.1673-629X.2018.09.028]
[8]陶晓力,刘宁钟,沈家全.基于深度信息融合的航拍车辆检测[J].计算机技术与发展,2019,29(09):117.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 023]
 TAO Xiao-li,LIU Ning-zhong,SHEN Jia-quan.Aerial Vehicle Detection Based on Depth Information Fusion[J].,2019,29(06):117.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 023]
[9]肖 建,梁定康,徐 威,等.一种基于无人机的违章违停自主巡检系统[J].计算机技术与发展,2019,29(12):153.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 027]
 XIAO Jian,LIANG Ding-kang,XU Wei,et al.A Self-inspection Violation System Based on UAV[J].,2019,29(06):153.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 027]
[10]陆兴华,明 仲,邱子琪,等.无人机低空滑翔抗攻击突防控制律优化设计[J].计算机技术与发展,2020,30(02):183.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 035]
 LU Xing-hua,MING Zhong,QIU Zi-qi,et al.Optimal Design of Anti-attack Penetration Control Law for UAV Gliding at Low Altitude[J].,2020,30(06):183.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 035]

更新日期/Last Update: 2023-06-10