[1]陶晓力,武 建,杨 坤.基于无人机视觉的桥梁裂缝检测[J].计算机技术与发展,2018,28(03):174-177.[doi:10.3969/ j. issn.1673-629X.2018.03.037]
 TAO Xiao-li,WU Jian,YANG Kun.Bridge Crack Detection Based on Unmanned Aerial Vehicle Vision[J].,2018,28(03):174-177.[doi:10.3969/ j. issn.1673-629X.2018.03.037]
点击复制

基于无人机视觉的桥梁裂缝检测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年03期
页码:
174-177
栏目:
应用开发研究
出版日期:
2018-03-10

文章信息/Info

Title:
Bridge Crack Detection Based on Unmanned Aerial Vehicle Vision
文章编号:
1673-629X(2018)03-0174-04
作者:
陶晓力1 武 建2 杨 坤3
1. 南京航空航天大学 计算机科学与技术学院,江苏 南京 211106;
2. 中设设计集团股份有限公司,江苏 南京 210000;
3. 连云港市公路管理处,江苏 连云港 222002
Author(s):
TAO Xiao-li 1 WU Jian 2 YANG Kun 3
1. School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;
2. Jiangsu Province Communications Planning and Design Institute Limited Company,Nanjing 210000,China;
3. Lianyungang City Highway Administration,Lianyungang 222002,China
关键词:
裂缝检测无人机沈俊边缘检测裂缝连接链码跟踪
Keywords:
crack detectionunmanned aerial vehicleShen Jun edge detectioncrack linkchain code tracking
分类号:
TP301
DOI:
10.3969/ j. issn.1673-629X.2018.03.037
文献标志码:
A
摘要:
针对公路桥梁的养护和管理,传统的人工检测方法不仅工作危险性大、作业成本高,而且工作效率低、检测结果可靠性差。 因此自动化的智能检测识别方式迫在眉睫。 针对桥梁裂缝细小难获取的问题,采用无人机装配高倍变焦摄像头的方法来采集桥梁裂缝图像。 采用最小值滤波、边缘检测等图像处理方法进行裂缝处理,通过链码跟踪的方法跟踪裂缝边缘得到裂缝周长面积等信息,并根据裂缝的线性特征进行特征的选择检测。 针对裂缝图像检测过程中断裂的问题,根据裂缝连续、断点相近的特点,设计了一种基于裂缝线段最邻近端点的连接方法。 通过实地对病害桥梁的考察获取了裂缝图像,对其进行检测处理,取得了良好的效果。
Abstract:
In view of maintenance and management for highway bridge,traditional manual testing has defects of high risk and cost,low efficiency and poor reliability in checking. So the automated methods of intelligent detection and identification are imminent. In this paper,aiming at the problem that the bridge crack is difficult to obtain,we use the way of unmanned aerial vehicle (UAV) with high power zoom camera to collect the bridge crack image. The crack processing is carried out by means of image processing such as minimum filtering and edge detection. The information such as crack perimeter is obtained by tracking the edge of the crack by chain code tracking,and the crack is selected according to the linear characteristic. Aiming at the problem of fracture in the detection of crack image,we design a connection method based on the nearest neighbor end of the crack line according to the characteristics of continuity and breakage of the crack. Through the field investigation of the disease bridge,the crack images are got and processed with better results.

相似文献/References:

[1]张晓军,陆兴华.加入不确定扰动的无人机飞行轨迹跟踪控制[J].计算机技术与发展,2018,28(01):182.[doi:10.3969/ j. issn.1673-629X.2018.01.039]
 ZHANG Xiao-jun,LU Xing-hua.Flight Trajectory Tracking Control Algorithm for Unmanned AerialVehicle with Uncertain Disturbance[J].,2018,28(03):182.[doi:10.3969/ j. issn.1673-629X.2018.01.039]
[2]王俊明,曹科才,肖斌,等. 基于Paparazzi Lisa/M2.0的无人机自主飞行设计[J].计算机技术与发展,2016,26(05):197.
 WANG Jun-ming,CAO Ke-cai,XIAO Bin,et al. Design of Autonomous Flight for UAV Based on Paparazzi Lisa/M2.0[J].,2016,26(03):197.
[3]陆兴华. 采用波束域加权的大迎角飞行姿态控制算法[J].计算机技术与发展,2017,27(01):117.
 LU Xing-hua. High Angle of Attack Flight Attitude Control Algorithm Based on Beam Domain Weighting[J].,2017,27(03):117.
[4]陆兴华.基于波束空间二维谱峰搜索的无人机控制算法[J].计算机技术与发展,2017,27(12):52.[doi:10.3969/ j. issn.1673-629X.2017.12.012]
 LU Xing-hua.Unmanned Aerial Vehicle Control Algorithm Based on Two Dimensional Spectrum Peak Searching for Beam Space[J].,2017,27(03):52.[doi:10.3969/ j. issn.1673-629X.2017.12.012]
[5]张晨,刘宁钟.基于无人机视觉的道路违法搭建检测[J].计算机技术与发展,2018,28(07):140.[doi:10.3969/ j. issn.1673-629X.2018.07.030]
 ZHANG Chen,LIU Ning-zhong.llegal Construction Detection of Road Based on Unmanned Aerial Vehicle Vision[J].,2018,28(03):140.[doi:10.3969/ j. issn.1673-629X.2018.07.030]
[6]王立春,刘宁钟,李强懿.基于无人机航拍图像的公路标线检测算法[J].计算机技术与发展,2018,28(09):138.[doi:10.3969/ j. issn.1673-629X.2018.09.028]
 WANG Li-chun,LIU Ning-zhong,LI Qiang-yi.A Road Markings Detection Algorithm Based on Aerial Image of UAV[J].,2018,28(03):138.[doi:10.3969/ j. issn.1673-629X.2018.09.028]
[7]陶晓力,刘宁钟,沈家全.基于深度信息融合的航拍车辆检测[J].计算机技术与发展,2019,29(09):117.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 023]
 TAO Xiao-li,LIU Ning-zhong,SHEN Jia-quan.Aerial Vehicle Detection Based on Depth Information Fusion[J].,2019,29(03):117.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 023]
[8]肖 建,梁定康,徐 威,等.一种基于无人机的违章违停自主巡检系统[J].计算机技术与发展,2019,29(12):153.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 027]
 XIAO Jian,LIANG Ding-kang,XU Wei,et al.A Self-inspection Violation System Based on UAV[J].,2019,29(03):153.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 027]
[9]陆兴华,明 仲,邱子琪,等.无人机低空滑翔抗攻击突防控制律优化设计[J].计算机技术与发展,2020,30(02):183.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 035]
 LU Xing-hua,MING Zhong,QIU Zi-qi,et al.Optimal Design of Anti-attack Penetration Control Law for UAV Gliding at Low Altitude[J].,2020,30(03):183.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 035]
[10]刘 鑫,赵慧杰,武苏雯.基于U-Net的岩层图像裂缝检测算法应用[J].计算机技术与发展,2021,31(05):73.[doi:10. 3969 / j. issn. 1673-629X. 2021. 05. 013]
 ,,et al.ApplicationofU-NetBasedRockFormationImageCrackDetectionAlgorithm[J].,2021,31(03):73.[doi:10. 3969 / j. issn. 1673-629X. 2021. 05. 013]

更新日期/Last Update: 2018-05-15