[1]杨 阳,盛胜利,奚雪峰.基于知识图谱的多轮对话技术研究综述[J].计算机技术与发展,2023,33(04):27-33.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 004]
 YANG Yang,SHENG Sheng-li,XI Xue-feng.Recovery of Multi-turn Dialogue Based on Knowledge Graph[J].,2023,33(04):27-33.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 004]
点击复制

基于知识图谱的多轮对话技术研究综述()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年04期
页码:
27-33
栏目:
综述
出版日期:
2023-04-10

文章信息/Info

Title:
Recovery of Multi-turn Dialogue Based on Knowledge Graph
文章编号:
1673-629X(2023)04-0027-07
作者:
杨 阳12 盛胜利3 奚雪峰12
1. 苏州科技大学 电子与信息工程学院,江苏 苏州 215009;
2. 苏州市虚拟现实智能交互及应用重点实验室(苏州科技大学),江苏 苏州 215009;
3. 数据分析实验室(德州理工大学),德克萨斯州 拉伯克市 79409
Author(s):
YANG Yang12 SHENG Sheng-li3 XI Xue-feng12
1. School of Electronic and Information Engineering,Suzhou University of Science and Technology,Suzhou 215009,China;
2. Suzhou Key Laboratory of Virtual Reality Intelligent Interaction and Application Technology,Suzhou University of Science and Technology,Suzhou 215009,China;
3. Data Analytics Lab,Soochow University ( Texas Tech University) ,Lubbock 79409,USA
关键词:
知识图谱多轮对话人机交互自然语言处理对话系统
Keywords:
knowledge graphmulti-turn dialoguehuman-computer interactionnatural language processingdialogue system
分类号:
TP18
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 04. 004
摘要:
随着自然语言技术的不断进步与发展,人机交互取得了跨越式的进步。 然而,目前人机交互系统往往都是用户与机器双方在特定的应用场景下设计完成的,在开放域下进行难度较大的多轮对话效果差强人意。 而知识图谱作为实现对话系统的重要工具之一,其被证明在多轮对话任务中是有效的。 该文从基于知识图谱的多轮对话技术总结了多轮对话中使用的相关技术,其中基于知识图谱的多轮对话模型包括 TransE、TransH、TransR 和 TransD 等,以及涉及到基于知识图谱的多轮对话相关数据集及评价标准。 最后提出了基于知识图谱的多轮对话技术当前面临的挑战并进行了总结。
Abstract:
With the continuous progress and development of natural language technology,human-computer interaction has made a greatprogress. However,at present,human-computer interaction systems are often designed by both users and machines in specific applicationscenarios,and the effect of difficult multi-turn dialogue in open domain is not satisfactory. As one of the important tools to implement dialogue system,knowledge graph has been proved to be effective in multi - turn dialogue tasks. We summarize the related technologiesused in multi-turn dialogue from the multi-turn dialogue technology based on knowledge graph. The multi-turn dialogue model basedon knowledge graph includes TransE,TransH,TransR and TransD,as well as the related data sets and evaluation standards of multi-turndialogue based on knowledge graph. Finally, we put forward the current challenges of multi - turn dialogue technology based onknowledge graph and make a summary.

相似文献/References:

[1]孙艳,田丽梅. 基于多维尺度分析的舆情研究主题词知识图谱[J].计算机技术与发展,2016,26(04):187.
 SUN Yan,TIAN Li-mei. Mapping Knowledge Domain on Subject Headings of Public Sentiment Research Based on Multi-dimensional Scaling[J].,2016,26(04):187.
[2]刘申凯,周霁婷,朱永华,等.融合知识图谱和 ESA 方法的网络新词识别[J].计算机技术与发展,2019,29(03):12.[doi:10.3969/ j. issn.1673-629X.2019.03.003]
 LIU Shen-kai,ZHOU Ji-ting,ZHU Yong-hua,et al.Network New Word Recognition Based on Fusion of Knowledge Graph and ESA[J].,2019,29(04):12.[doi:10.3969/ j. issn.1673-629X.2019.03.003]
[3]戈其平,钟艳如.基于数学教学的知识图谱构建[J].计算机技术与发展,2019,29(03):187.[doi:10.3969/ j. issn.1673-629X.2019.03.039]
 GE Qi-ping,ZHONG Yan-ru.Construction of Knowledge Atlas Based on Mathematics Teaching[J].,2019,29(04):187.[doi:10.3969/ j. issn.1673-629X.2019.03.039]
[4]魏 瑾,李伟华,潘 炜.基于知识图谱的智能决策支持技术及应用研究[J].计算机技术与发展,2020,30(01):1.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 001]
 WEI Jin,LI Wei-hua,PAN Wei.Research on Intelligent Decision Support Technology and Application Based on Knowledge Graph[J].,2020,30(04):1.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 001]
[5]项 威,王 邦.中文事件抽取研究综述[J].计算机技术与发展,2020,30(02):1.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 001]
 XIANG Wei,WANG Bang.Survey of Chinese Event Extraction Research[J].,2020,30(04):1.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 001]
[6]刘家祝,郭 强,吴碧伟,等.基于子图相交的社交账号与知识图谱实体对齐[J].计算机技术与发展,2020,30(05):10.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 003]
 LIU Jia-zhu,GUO Qiang,WU Bi-wei,et al.Subgraph Intersection Based Alignment between Social Media Account and Knowledge Graph Entity[J].,2020,30(04):10.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 003]
[7]陆菁宇,张绍阳,黄文旎.学科发展状态的知识图谱构建[J].计算机技术与发展,2020,30(06):145.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 028]
 LU Jing-yu,ZHANG Shao-yang,HUANG Wen-ni.Analysis of Development Status of Discipline Based on Knowledge Graph[J].,2020,30(04):145.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 028]
[8]黄东晋,秦 汉,郭 昊.基于 BERT-CNN 的电影原声智能问答系统[J].计算机技术与发展,2020,30(11):158.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 029]
 HUANG Dong-jin,QIN Han,GUO Hao.Movie Soundtrack Intelligent Question and Answer System Based on BERT-CNN[J].,2020,30(04):158.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 029]
[9]任佳妮,杨 阳.全球医疗机器人技术领域创新态势分析[J].计算机技术与发展,2021,31(04):158.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 027]
 REN Jia-ni,YANG Yang.Analysis of Innovation Situation in Field of Global MedicalRobot Technology[J].,2021,31(04):158.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 027]
[10]卢 琪,谢艺菲,谢 钧,等.知识图谱在智能问答中的应用研究[J].计算机技术与发展,2021,31(07):13.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 003]
 LU Qi,XIE Yi-fei,XIE Jun,et al.Research on Application of Knowledge Graphs in Intelligent Question Answering[J].,2021,31(04):13.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 003]

更新日期/Last Update: 2023-04-10