[1]王励烨,丁威威.基于同步性脑网络的注意力识别研究[J].计算机技术与发展,2023,33(02):146-152.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 022]
 WANG Li-ye,DING Wei-wei.Attention Recognition Based on Synchronous Brain Network[J].,2023,33(02):146-152.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 022]
点击复制

基于同步性脑网络的注意力识别研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年02期
页码:
146-152
栏目:
人工智能
出版日期:
2023-02-10

文章信息/Info

Title:
Attention Recognition Based on Synchronous Brain Network
文章编号:
1673-629X(2023)02-01146-07
作者:
王励烨丁威威
南京邮电大学 电子与光学工程学院 微电子学院,江苏 南京 210023
Author(s):
WANG Li-yeDING Wei-wei
School of Electronic and Optical Engineering & Microelectronics,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
关键词:
注意力分类卷积神经网络特征选择锁相值信息增益
Keywords:
attention classificationconvolutional neural networkfeature selectionphase locking valueinformation gain
分类号:
TP183;TN911. 8
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 02. 022
摘要:
检测人类大脑的注意力状态是脑机接口技术的一个研究热点。 从 EEG( Electroencephalogram) 脑网络的视角来探寻注意力的形成机理并进行分类研究,提出了一种基于同步性脑网络和信息增益的注意力分类算法( SBN-IG) 。 该算法采用锁相值( Phase Locking Value,PLV) 构建脑网络提取大脑信息的耦合关系,同时为了保留脑网络结构的信息,采用卷积神经网络作为分类器,构建了一种基于同步性脑网络的注意力分类算法(SBN) ,分类准确率达到了 90. 09% 。 为了后续的应用需求,对 SBN 增加了基于信息增益的特征稀疏算法,以充分提取脑网络的重要连接信息,降低特征的冗余度,构成算法 SBN-IG。 结果表明,特征稀疏后使用 13 个电极就能够实现 86. 88% 的分类准确率,同时提升了算法效率,降低了运算量,为实时检测注意力设备研发提供了算法基础。
Abstract:
Detection attention state of human brain is a hot topic in Brain-Computer Interface ( BCI) technology. The physiological manifestation of attention from the perspective of Electroencephalogram brain network is explored and classification research is conducted. Analgorithm of Synchronous Brain Network and Information Gain ( SBN-IG) for attention classification is proposed. This algorithm usesPhase Locking Value ( PLV) to construct a synchronous brain network and extract the coupling of brain information. To preserve thestructure information of brain networks,with the Convolutional Neural Network as the classifier,an attention classification algorithm basedon SBN is proposed. The classification accuracy of SBN - IG can reach 90. 09% . For subsequent application requirements, a featuresparse algorithm based on information gain is added to the SBN to extract the important connection information of the brain network andreduce the redundancy of features, which constitute the SBN - IG. As a result, the classification accuracy can reach 86. 88% by 13electrodes. The efficiency of the algorithm is improved and the computation is reduced. The algorithm provides a theoretical basis for theresearch of real-time state detection equipment.

相似文献/References:

[1]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[2]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].,2016,26(02):31.
[3]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(02):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[4]郭子琰,舒心,刘常燕,等.基于ReLU 函数的卷积神经网络的花卉识别算法[J].计算机技术与发展,2018,28(05):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
 GUO Ziyan,SHU Xin,LIU Changyan,et al.A Recognition Algorithm of Flower Based on Convolution Neural Network with ReLU Function[J].,2018,28(02):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
[5]缪宇杰,吴智钧,宫 婧.基于3D 卷积的视频错帧筛选方法[J].计算机技术与发展,2018,28(05):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
 MIAO Yu-jie,WU Zhi-jun,GONG Jing.A Wrong Temporal-order Frames Identification Method Based on 3D Convolution[J].,2018,28(02):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
[6]吴玉枝,吴志红,熊运余.基于卷积神经网络的小样本车辆检测与识别[J].计算机技术与发展,2018,28(06):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
 WU Yu-zhi,WU Zhi-hong,XIONG Yun-yu.Vehicle Detection and Recognition of a Few Samples Based on Convolutional Neural Network[J].,2018,28(02):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
[7]李相桥,李晨,田丽华,等.卷积神经网络并行训练的优化研究[J].计算机技术与发展,2018,28(08):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
 LI Xiang-qiao,LI Chen,TIAN Li-hua,et al.Research on Optimization of Parallel Training for Convolution Neural Network[J].,2018,28(02):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
[8]邓宗平,赵启军,陈虎. 基于深度学习的人脸姿态分类方法[J].计算机技术与发展,2016,26(07):11.
 DEND Zong-ping,ZHAO Qi-jun,CHEN Hu. Face Pose Classification Method Based on Deep Learning[J].,2016,26(02):11.
[9]河海大学 计算机与信息学院,江苏 南京 0098.卷积网络的无监督特征提取对人脸识别的研究[J].计算机技术与发展,2018,28(06):17.[doi:10.3969/ j. issn.1673-629X.2018.06.004]
 DU Bai-sheng.Research on Unsupervised Feature Extraction Based on Convolutional Neural Network for Face Recognition[J].,2018,28(02):17.[doi:10.3969/ j. issn.1673-629X.2018.06.004]
[10]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(02):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]

更新日期/Last Update: 2023-02-10