[1]仓林青,王友国*,孙先莉.基于传播者心理差异的随机谣言传播模型[J].计算机技术与发展,2022,32(12):142-149.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 022]
 CANG Lin-qing,WANG You-guo*,SUN Xian-li.Stochastic Rumor Propagation Model Based on Psychological Difference of Spreaders[J].,2022,32(12):142-149.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 022]
点击复制

基于传播者心理差异的随机谣言传播模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年12期
页码:
142-149
栏目:
人工智能
出版日期:
2022-12-10

文章信息/Info

Title:
Stochastic Rumor Propagation Model Based on Psychological Difference of Spreaders
文章编号:
1673-629X(2022)12-01142-08
作者:
仓林青王友国* 孙先莉
南京邮电大学 理学院,江苏 南京 210023
Author(s):
CANG Lin-qingWANG You-guo* SUN Xian-li
School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
关键词:
随机谣言传播模型社交网络噪声沉默-复发机制蒙特卡洛方法
Keywords:
stochastic rumor propagation modelsocial networknoisesilent-return mechanismMonte Carlo method
分类号:
TP393
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 12. 022
摘要:
社交网络已经成为信息时代的主流媒体,因此研究社交网络上的谣言传播动力学行为有助于更好地理解谣言传播机理。 考虑到社交网络经常受环境因素的影响,导致网络拓扑结构是时变的,引入随机扰动的噪声,针对一些传播者由于心理差异因素,选择保持沉默,在谣言传播过程中引入沉默者个体,基于此建立一个考虑沉默-复发机制的随机 Si-SIR(Silent-Susceptible-Infected-Removed)谣言传播模型,并对复杂社交网络中随机谣言传播动力学方程进行了研究。 通过对随机模型进行稳定性分析,推导了谣言消亡的充分条件,讨论了同质网络和异质网络上谣言的传播阈值。 通过蒙特卡洛方法分别在 WS( Watts-Strogatz)小世界网络、BA( Barabsi-Albert) 无标度网络、Facebook 真实社交网络上进行模拟仿真。 仿真实验表明,添加适当强度的噪声,加速了谣言扩散的过程,扩大了谣言的最终规模;与 WS 和 BA 网络相比,Facebook 网络的谣言扩散速度更快,谣言的最终规模更高;更强的沉默-复发机制能够提高传播节点密度峰值和延迟谣言消亡的时间。
Abstract:
Social network has become the mainstream media in the information age. Therefore,studying the rumor propagation dynamicsin social network is helpful to better understand the rumor transmission mechanism. Considering that social networks are often affected byenvironmental factors,resulting in time - varying network topology,random disturbance noise is introduced. Aiming at some spreaderswho choose to remain silent due to psychological differences,silent nodes are introduced in the process of rumor spreading. Based onthis,a stochastic Si-SIR ( Silent-Susceptible-Infected-Removed) rumor propagation model by considering silent-return mechanism isestablished,and the dynamics equations of stochastic rumor propagation model in complex social networks are studied. Based on thestability analysis of stochastic model,the sufficient condition of rumor extinction is deduced,and the spreading threshold of rumor onhomogeneous network and heterogeneous network is discussed. Simulations are conducted in the WS ( Watts - Strogatz) small - worldnetwork,BA ( Barabsi-Albert) scale-free network,and Facebook real social network by Monte Carlo method,showing that the rumordiffusion process can be accelerated and expand final scale of rumor as long as add the appropriate noise intensity. The rumor spreadingspeed of the Facebook network is faster and the higher of final scale of the rumor as long than that in WS network and BA network.Stronger silence-return mechanism can increase the peak of spread nodes density and delay the time of rumor extinction.

相似文献/References:

[1]李桃陶,周斌,王忠振. 基于社交网络的图数据挖掘应用研究[J].计算机技术与发展,2014,24(10):6.
 LI Tao-tao,ZHOU Bin,WANG Zhong-zhen. Research on Graph Data Mining Application Based on Social Network[J].,2014,24(12):6.
[2]张付霞,蒋朝惠. 基于DSNPP算法的社交网络隐私保护方法[J].计算机技术与发展,2015,25(08):152.
 ZHANG Fu-xia,JIANG Chao-hui. Privacy-preserving Approach in Social Networks Based on DSNPP Algorithm[J].,2015,25(12):152.
[3]陈思憬,骆冰清,孙知信.基于混合好友路径信任度的社交好友推荐算法[J].计算机技术与发展,2018,28(02):74.[doi:10.3969/j.issn.1673-629X.2018.02.017]
 CHEN Si-jing,LUO Bing-qing,SUN Zhixin.Social Friend Recommendation Algorithm Based on Trust of Paths between Mixed Friends[J].,2018,28(12):74.[doi:10.3969/j.issn.1673-629X.2018.02.017]
[4]李梦洁,邵曦.基于文本属性的微博用户相似度研究[J].计算机技术与发展,2018,28(05):17.[doi:10.3969/j.issn.1673-629X.2018.05.005]
 LI Meng-jie,SHAO Xi. Research on Micro-blog User Similarity Based on Text Similarity[J].,2018,28(12):17.[doi:10.3969/j.issn.1673-629X.2018.05.005]
[5]房旋[],陈升波[],宫婧[][],等. 基于社交影响力的推荐算法[J].计算机技术与发展,2016,26(06):31.
 FANG Xuan[],CHEN Sheng-bo[],GONG Jing[][],et al. A Recommendation Algorithm Based on Social Influence[J].,2016,26(12):31.
[6]余莎莎[],王友国[],朱亮[]. 基于SIR社交网络中商业谣言传播研究[J].计算机技术与发展,2016,26(11):195.
 YU Sha-sha[],WANG You-guo[],ZHU Liang[]. Research on Online Business Rumors Transmission Based on an Improved SIR Model[J].,2016,26(12):195.
[7]余莎莎[],王友国[],朱亮[]. 基于网络博弈论的谣言扩散建模研究[J].计算机技术与发展,2017,27(04):6.
 YU Sha-sha[],WANG You-guo[],ZHU Liang[]. Investigation on Rumor Diffusion Modeling with Network Game Theory[J].,2017,27(12):6.
[8]付明明,余莎莎,应志领. 在线社交网络的双谣言模型研究[J].计算机技术与发展,2017,27(09):53.
 FU Ming-ming,YU Sha-sha,YING Zhi-ling. Research on Double Rumor Model in Online Social Network[J].,2017,27(12):53.
[9]李旗旗,徐敏. 社交网络中的链路预测方法改进[J].计算机技术与发展,2017,27(11):37.
 LI Qi-qi,XU Min. Improvement of Link Prediction Method in Social Networks[J].,2017,27(12):37.
[10]王冰玉,吴振宇,沈苏彬.一种社交网络的增量社区检测算法及实现优化[J].计算机技术与发展,2018,28(10):64.[doi:10.3969/ j. issn.1673-629X.2018.10.013]
 WANG Bing-yu,WU Zhen-yu,SHEN Su-bin.An Incremental Community Detection Algorithm for Social Networks and Its Optimization[J].,2018,28(12):64.[doi:10.3969/ j. issn.1673-629X.2018.10.013]

更新日期/Last Update: 2022-12-10