[1]吕 鹏,单剑锋.基于多特征融合的人脸表情识别算法[J].计算机技术与发展,2022,32(10):151-155.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 025]
 LYU Peng,SHAN Jian-feng.Facial Expression Recognition Algorithm Based on Multi-feature Fusion[J].,2022,32(10):151-155.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 025]
点击复制

基于多特征融合的人脸表情识别算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年10期
页码:
151-155
栏目:
人工智能
出版日期:
2022-10-10

文章信息/Info

Title:
Facial Expression Recognition Algorithm Based on Multi-feature Fusion
文章编号:
1673-629X(2022)10-0151-05
作者:
吕 鹏单剑锋
南京邮电大学 电子信息与光学工程、微电子学院,江苏 南京 210023
Author(s):
LYU PengSHAN Jian-feng
School of Electronic Information and Optical Engineering,Microelectronics,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
关键词:
人脸表情识别深度学习稠密网络浅层网络特征融合
Keywords:
facial expression recognitiondeep learningDenseNetshallow networkfeature fusion
分类号:
TP391. 41
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 10. 025
摘要:
由于稠密网络(DenseNet) 模型具有独特的特征提取和传输方式,使其面对小数据集时在缓解网络过拟合的同时,可以取得不错的分类效果。 但是传统的 DenseNet 模型具有较深的网络结构,可能造成特征冗余和硬件内存的负担。 针对该问题,研究了一种相对浅层的稠密网络,通过压缩稠密网络的深度并增加每个模块中卷积核的数量来高效提取表情图像的隐性特征。 考虑到该稠密网络在提取特征时也舍弃了部分图像信息以及单一特征可能难以表达人脸表情图像的全部信息,利用 LDN( Local Directional Number Pattern,LDN) 算法提取表情图像的梯度方向纹理信息,与稠密网络提取的隐式特征进行特征融合,共同进入 Softmax 层进行表情分类。 该算法在 CK+和 Jaffe 数据集上进行仿真实验,获得了不错的识别率,在一定程度上证实了算法的有效性。
Abstract:
Because DenseNet model has a unique feature extraction and transmission mode,it can not only alleviate network overfitting but also achieve excellent classification effect when facing small data sets. However, the traditional DenseNet model has a deep network structure, which may cause feature redundancy and hardware memory burden. To solve this problem,we study a relatively shallow dense network and extract the recessive features efficiently by compressing the depth of the dense network and increasing the number of convolution kernels in each module. The local directional number pattern ( LDN) algorithm is used to extract gradient direction texture information of facial expression images, considering that the dense network abandoned part of image information and a single feature could not express all information of facial expression images. Feature fusion is carried out with implicit features extracted from dense network,and they are jointly entered into Softmax layer for facial expression classification. The algorithm is simulated on CK+ and Jaffe datasets,and high recognition rate is obtained,which proves the effectiveness of the algorithm to a certain extent.

相似文献/References:

[1]潘峥嵘,贺秀伟.人脸表情识别在智能机器人中的应用研究[J].计算机技术与发展,2018,28(02):173.[doi:10.3969/j.issn.1673-629X.2018.02.037]
 PAN Zheng-rong,HE Xiu-wei.Research on Application of Facial Expression Recognition in Intelligent Robot[J].,2018,28(10):173.[doi:10.3969/j.issn.1673-629X.2018.02.037]
[2]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].,2018,28(10):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[3]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(10):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[4]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(10):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[5]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(10):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[6]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(10):19.
[7]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(10):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[8]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(10):1.
[9]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(10):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[10]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(10):1.
[11]付倩倩,李 昂.一种改进的卷积神经网络的表情识别算法[J].计算机技术与发展,2020,30(11):80.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 015]
 FU Qian-qian,LI Ang.An Improved Facial Expression Recognition Technology Based on Convolutional Neural Network[J].,2020,30(10):80.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 015]
[12]植炜基,刘春雨,郑婉君,等.基于生成对抗网络的人脸表情识别技术综述[J].计算机技术与发展,2021,31(增刊):1.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 001]
 ZHI Wei-ji,LIU Chun-yu,ZHENG Wan-jun,et al.Survey of Facial Expression Recognition Technology Based onGenerative Adversarial Network[J].,2021,31(10):1.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 001]
[13]张栋昱,赵 磊.融合注意力机制改进 ResNet 的人脸表情识别[J].计算机技术与发展,2023,33(05):130.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 020]
 ZHANG Dong-yu,ZHAO Lei.Improved Facial Expression Recognition in ResNet by Integrating Attention Mechanism[J].,2023,33(10):130.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 020]

更新日期/Last Update: 2022-10-10