[1]李骏峰,杨小军,张凯望.基于 YOLOX-L 算法的安全帽佩戴检测方法[J].计算机技术与发展,2022,32(09):100-106.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 016]
 LI Jun-feng,YANG Xiao-jun,ZHANG Kai-wang.Safety Helmet Wearing Detection Method Based on YOLOX-L Algorithm[J].,2022,32(09):100-106.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 016]
点击复制

基于 YOLOX-L 算法的安全帽佩戴检测方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年09期
页码:
100-106
栏目:
人工智能
出版日期:
2022-09-10

文章信息/Info

Title:
Safety Helmet Wearing Detection Method Based on YOLOX-L Algorithm
文章编号:
1673-629X(2022)09-0100-07
作者:
李骏峰杨小军张凯望
长安大学 信息工程学院,陕西 西安 710068
Author(s):
LI Jun-fengYANG Xiao-junZHANG Kai-wang
School of Information Engineering,Chang’an University,Xi’an 710068,China
关键词:
深度学习卷积神经网络目标检测安全帽佩戴检测YOLOX-L 算法
Keywords:
deep learningconvolutional neural networktarget detectionsafety helmet wearing detectionYOLOX-L algorithm
分类号:
TP399
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 09. 016
摘要:
全帽作为生产和作业场地工人的最基本的个体防护装备,能够极大地保证工作人员的安全防护,在实际生产环境下由于多种因素造成的伤亡中,没有佩戴安全帽造成伤亡事故的占比一直很高。 为了减少相应的事故发生率,提出一种基于 YOLOX-L 算法的安全帽佩戴检测方法。 YOLOX 系列模型是当前最为先进的实时的无锚的单阶段检测器之一,在多种类别目标的检测下都具有优异的准确率和速度效果。 通过使用 YOLOX-L 模型骨干层提取多尺度的特征图,用于回归目标位置和预测类别;使用安全帽佩戴检测数据集( SHWD) ,使用冻结非冻结的训练方式训练 YOLOX-L 网络,最后选取最好的训练模型检测安全帽的类别和位置。 实验结果表明,在 SHWD 数据集检测任务中,相比较于 YOLOv3 算法,基于YOLOX-L 的 mAP 提高了 5. 41% ,查全率分别提高了 18. 51% 和 26. 44% 。 所提方法在满足高准确率和实时性要求的基础上,更少发生漏检,具有更高的查全率。
Abstract:
Safety helmet,as the most basic personal protective equipment for workers in production and operation sites,can greatly ensure the safety protection of workers. In the actual production environment,among the casualties caused by various factors,the proportion ofaccidents caused by not wearing safety helmet has been quite high. In order to reduce the accident rate, a helmet wearing detection method based on YOLOX-L algorithm is proposed. YOLOX series model is one of the most advanced real-time single-stage detectors without anchors at present,which has excellent accuracy and speed in detecting various kinds of targets. The backbone layer of YOLOX-L model is used to extract different multi-scale feature maps for target location and category prediction. In this paper,we use the data set of helmet wearing test ( SHWD) ,train the YOLOX-L network by using the frozen and unfrozen training method,and finally select the best training model to detect the category and position of helmet. Experimental results show that compared with YOLOv3 algorithm,the mAP based on YOLOX-L is improved by 5. 41% ,and the recall rate is increased by 18. 51% and 26. 44% respectively in the SHWD dataset detection task. On the basis of meeting the requirements of high accuracy and real-time,the proposed method has less missed detection and higher recall rate.

相似文献/References:

[1]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].,2018,28(09):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[2]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].,2016,26(09):31.
[3]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(09):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[4]郭子琰,舒心,刘常燕,等.基于ReLU 函数的卷积神经网络的花卉识别算法[J].计算机技术与发展,2018,28(05):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
 GUO Ziyan,SHU Xin,LIU Changyan,et al.A Recognition Algorithm of Flower Based on Convolution Neural Network with ReLU Function[J].,2018,28(09):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
[5]缪宇杰,吴智钧,宫 婧.基于3D 卷积的视频错帧筛选方法[J].计算机技术与发展,2018,28(05):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
 MIAO Yu-jie,WU Zhi-jun,GONG Jing.A Wrong Temporal-order Frames Identification Method Based on 3D Convolution[J].,2018,28(09):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
[6]吴玉枝,吴志红,熊运余.基于卷积神经网络的小样本车辆检测与识别[J].计算机技术与发展,2018,28(06):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
 WU Yu-zhi,WU Zhi-hong,XIONG Yun-yu.Vehicle Detection and Recognition of a Few Samples Based on Convolutional Neural Network[J].,2018,28(09):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
[7]李相桥,李晨,田丽华,等.卷积神经网络并行训练的优化研究[J].计算机技术与发展,2018,28(08):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
 LI Xiang-qiao,LI Chen,TIAN Li-hua,et al.Research on Optimization of Parallel Training for Convolution Neural Network[J].,2018,28(09):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
[8]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(09):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[9]邓宗平,赵启军,陈虎. 基于深度学习的人脸姿态分类方法[J].计算机技术与发展,2016,26(07):11.
 DEND Zong-ping,ZHAO Qi-jun,CHEN Hu. Face Pose Classification Method Based on Deep Learning[J].,2016,26(09):11.
[10]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(09):19.
[11]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(09):7.
[12]曲之琳,胡晓飞.基于改进激活函数的卷积神经网络研究[J].计算机技术与发展,2017,27(12):77.[doi:10.3969/ j. issn.1673-629X.2017.12.017]
 QU Zhi-lin,HU Xiao-fei.Research on Convolutional Neural Network Based on Improved Activation Function[J].,2017,27(09):77.[doi:10.3969/ j. issn.1673-629X.2017.12.017]
[13]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(09):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[14]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(09):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[15]阮航,王立春.基于特征图的车辆检测和分类[J].计算机技术与发展,2018,28(11):39.[doi:10.3969/ j. issn.1673-629X.2018.11.009]
 RUAN Hang,WANG Li-chun.Vehicle Detection and Classification Based on Feature Map[J].,2018,28(09):39.[doi:10.3969/ j. issn.1673-629X.2018.11.009]
[16]刘华春.卷积神经网络在车牌识别中的应用研究[J].计算机技术与发展,2019,29(04):128.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 026]
 LIU Hua-chun.Research on Application of Convolutional Neural Network in License Plate Recognition[J].,2019,29(09):128.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 026]
[17]倪申龙,曾接贤,周世健.整体车牌图像超分辨率重建研究[J].计算机技术与发展,2019,29(04):195.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 039]
 NI Shen-long,ZENG Jie-xian,ZHOU Shi-jian.Study on Reconstruction of Overall Image of License Plate[J].,2019,29(09):195.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 039]
[18]王山海,刘谦,马鑫鑫.基于图像识别的人工影响天气业务的研究[J].计算机技术与发展,2019,29(05):172.[doi:10. 3969 / j. issn. 1673-629X. 2019. 05. 036]
 WANG Shan-hai,LIU Qian,MA Xin-xin.Research on Weather Modification Based on Image Recognition[J].,2019,29(09):172.[doi:10. 3969 / j. issn. 1673-629X. 2019. 05. 036]
[19]刘华春,侯向宁.采用视觉显著性和卷积网络的车牌定位算法[J].计算机技术与发展,2019,29(06):74.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 016]
 LIU Hua-chun,HOU Xiang-ning.A License Plate Location Algorithm Using Visual Saliency and Convolutional Network[J].,2019,29(09):74.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 016]
[20]黄 鹤,荆晓远,董西伟,等.基于 Skip-gram 的 CNNs 文本邮件分类模型[J].计算机技术与发展,2019,29(06):143.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 030]
 HUANG He,JING Xiao-yuan,DONG Xi-wei,et al.CNNs-Highway Text Message Classification Model Based on Skip-gram[J].,2019,29(09):143.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 030]

更新日期/Last Update: 2022-09-10