[1]詹 御,张郭健,彭麟杰,等.基于 DRL 的 MEC 卸载网络竞争窗口优化[J].计算机技术与发展,2022,32(06):99-105.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 017]
 ZHAN Yu,ZHANG Guo-jian,PENG Lin-jie,et al.Optimization of Contention Window of MEC Offloading Network Based on DRL[J].,2022,32(06):99-105.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 017]
点击复制

基于 DRL 的 MEC 卸载网络竞争窗口优化()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年06期
页码:
99-105
栏目:
网络与安全
出版日期:
2022-06-10

文章信息/Info

Title:
Optimization of Contention Window of MEC Offloading Network Based on DRL
文章编号:
1673-629X(2022)06-0099-07
作者:
詹 御张郭健彭麟杰文 军
电子科技大学 信息与软件工程学院,四川 成都 610054
Author(s):
ZHAN YuZHANG Guo-jianPENG Lin-jieWEN Jun
School of Information and Software Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China
关键词:
深度强化学习多接入边缘计算物联网网络优化竞争窗口
Keywords:
deep reinforcement learningmulti-access edge computinginternet of thingsnetwork optimizationcontention window
分类号:
TP393
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 06. 017
摘要:
多接入边缘计算(MEC) 是一种新兴的云计算。 低算力的物联网设备可以把计算任务卸载到 MEC 上处理,以提供更高质量的服务。 当 MEC 的卸载网络在面临大量设备接入时,各设备请求服务时相互竞争的网络连接会发生大量碰撞从而导致 MEC 卸载网络的性能下降。 在 Wi-Fi 作为 MEC 的接入点场景中,面对较少数量的设备接入时,802. 11 协议的退避算法可以合理地设置竞争窗口的值来减轻碰撞所带来的网络吞吐量下降,但默认的退避算法无法有效地应对较多的接入设备或动态变化的网络拓扑。 为优化竞争窗口的设置以改善网络性能,提出两种竞争窗口优化的深度强化学习(DRL) 方法,将深度 Q 网络( DQN) 与深度确定性策略梯度( DDPG) 方法分别用于优化 MEC 卸载网络竞争窗口大小的设置,以有效应对大量的接入设备和网络拓扑的动态变化。 仿真实验结果表明,DRL 方法在不同的接入设备数量、静态网络拓扑和动态网络拓扑的条件下,均可稳定网络的吞吐量,且相比于默认的方法有较大的提升,静态条件下相对提升 46% ,动态条件下相对提升 36% ,且并没有破坏网络服务的公平性。
Abstract:
Multi-access edge computing ( MEC) is an emerging type of cloud computing. Low computing power IoT devices can offloadcomputing tasks to MEC for processing to provide higher quality services. When the offloading network of MEC is faced with a largenumber of device accesses,there are a lot of collisions among competing network connections when each device requests services,thusleading to performance degradation of the MEC offload network. In the scenario where Wi-Fi is used as the access point for MEC,the802. 11 protocol’s back-off algorithm can reasonably set the value of the contention window ( CW) to mitigate the network through put degradation caused by collisions when facing a smaller number of devices,but the default back-off algorithm cannot effectively cope witha larger number of access devices or dynamically changing network topology. To optimize the setting of the contention window toimprove network performance,two deep reinforcement learning ( DRL) methods for CW optimization are proposed. The deep Q network( DQN) and deep deterministic policy gradient ( DDPG) methods are used to optimize the setting of the contention window size for MECoffloading networks to effectively cope with a large number of access devices and dynamic changes in network topology,respectively.The simulation experimental results show that the DRL method stabilizes the network throughput under different numbers of access devices, static network topologies and dynamic network topologies,and has a large improvement over the default method,with a relativeimprovement of 46% under static conditions and 36% under dynamic conditions,with out destroying the fairness of network services.

相似文献/References:

[1]赵 纯,董小明.基于深度 Q-Learning 的信号灯配时优化研究[J].计算机技术与发展,2021,31(08):198.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 034]
 ZHAO Chun,DONG Xiao-ming.Research on Signal Timing Optimization Based on Deep Q-Learning[J].,2021,31(06):198.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 034]
[2]况立群,冯 利,韩 燮,等.基于双深度 Q 网络的智能决策系统研究[J].计算机技术与发展,2022,32(02):137.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 022]
 KUANG Li-qun,FENG Li,HAN Xie,et al.Research on Intelligent Decision-making System Based on Double Deep Q-Network[J].,2022,32(06):137.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 022]
[3]高文斌,王 睿,王田丰,等.基于深度强化学习的 QoS 感知 Web 服务组合[J].计算机技术与发展,2022,32(06):92.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 016]
 GAO Wen-bin,WANG Rui,WANG Tian-feng,et al.QoS-aware Service Composition Based on Deep Reinforcement Learning[J].,2022,32(06):92.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 016]
[4]牟轩庭,张宏军,廖湘琳,等.规则引导的智能体决策框架[J].计算机技术与发展,2022,32(10):156.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 026]
 MU Xuan-ting,ZHANG Hong-jun,LIAO Xiang-lin,et al.Rule-guided Agent Decision-Making Framework[J].,2022,32(06):156.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 026]
[5]林泽阳,赖 俊,陈希亮.基于课程学习的深度强化学习研究综述[J].计算机技术与发展,2022,32(11):16.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 003]
 LIN Ze-yang,LAI Jun,CHEN Xi-liang.An Overview of Deep Reinforcement Learning Based on Curriculum Learning[J].,2022,32(06):16.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 003]
[6]吕相霖,臧兆祥,李思博,等.基于注意力的循环 PPO 算法及其应用[J].计算机技术与发展,2024,34(01):136.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 020]
 LYU Xiang-lin,ZANG Zhao-xiang,LI Si-bo,et al.Attention-based Recurrent PPO Algorithm and Its Application[J].,2024,34(06):136.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 020]
[7]龚亮亮,张 影,张俊尧,等.基于深度强化学习的任务卸载和资源分配优化[J].计算机技术与发展,2024,34(04):116.[doi:10. 3969 / j. issn. 1673-629X. 2024. 04. 018]
 GONG Liang-liang,ZHANG Ying,ZHANG Jun-yao,et al.Joint Optimization of Task Offloading and Resource Allocation Based on Deep Reinforcement Learning[J].,2024,34(06):116.[doi:10. 3969 / j. issn. 1673-629X. 2024. 04. 018]

更新日期/Last Update: 2022-06-10