[1]赵崇志,卢 俊,田 源,等.基于 Yolov5s 的作业现场阀门规范操作识别方法[J].计算机技术与发展,2022,32(05):216-220.[doi:10. 3969 / j. issn. 1673-629X. 2022. 05. 036]
 ZHAO Chong-zhi,LU Jun,TIAN Yuan,et al.Yolov5s-based Method for Identifying Valve Specification Operations at Job Sites[J].,2022,32(05):216-220.[doi:10. 3969 / j. issn. 1673-629X. 2022. 05. 036]
点击复制

基于 Yolov5s 的作业现场阀门规范操作识别方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年05期
页码:
216-220
栏目:
应用前沿与综合
出版日期:
2022-05-10

文章信息/Info

Title:
Yolov5s-based Method for Identifying Valve Specification Operations at Job Sites
文章编号:
1673-629X(2022)05-0216-05
作者:
赵崇志1 卢 俊2 田 源1 邢金台1 董金平1 张 蕾1 田 枫2
1. 中国石油天然气股份有限公司冀东油田分公司,河北 唐山 063004;
2. 东北石油大学 计算机与信息技术学院,黑龙江 大庆 163318
Author(s):
ZHAO Chong-zhi1 LU Jun2 TIAN Yuan1 XING Jin-tai1 DONG Jin-ping1 ZHANG Lei1 TIAN Feng2
1. Jidong Oilfield Company,PetroChina,Tangshan 063004,China;
2. School of Computer & Information Technology of Northeast Petroleum University,Daqing 163318,China
关键词:
深度学习作业现场YOLOv5s目标检测阀门操作识别
Keywords:
deep learningoperation sitesYOLOv5sobject detectionvalve operation identification
分类号:
TP399
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 05. 036
摘要:
将基于深度学习算法的图像识别技术应用到油田作业现场监控领域, 解决阀门操作的规范性问题。 采用YOLOv5s 网络作为作业现场阀门规范操作识别的模型,通过图像增强方法解决阀门周围的栏杆遮挡问题,制作阀门操作的数据集,保证了数据集的丰富性。 然后在自制阀门操作分类的数据集上对网络进行训练,利用训练好的 YOLOv5s 网络提取作业人员不同的阀门操作图像的特征和位置信息,实现作业现场阀门规范操作的识别。 经过测试,验证该模型最终检测准确率达到了 93% ,检测速度能达到实时的效果。 基于 YOLOv5s 网络的作业现场阀门规范操作识别的模型在不同光照和视角等条件下,检测准确率高,鲁棒性好、模型计算速度快。 满足了油田作业现场实际需求,解决了油田作业现场员工在阀门操作上的安全问题。
Abstract:
To apply the image recognition technology based on deep learning algorithm to the field of oilfield operation site monitoring to solve the problem? of valve operation specification. In this paper,the YOLOv5s network is used as a model for the recognition of valve normative operations at operation sites, and the problem of obscuring the railings around the valves is solved by image enhancement methods to produce a dataset? ? ? ? of valve operations, which ensures the richness of the dataset. The network is then trained on the dataset of homemade valve operation classification, and the trained YOLOv5s network is used to extract the features and location information of different valve operation images of operators to achieve the recognition of valve regulation operation at the job site. After testing,it was verified that the final detection accuracy of? ?the model reached 93% and the detection speed could achieve real - time results. The YOLOv5s network-based model for the recognition of regulated valve operations at the job site has high detection accuracy, strong robustness and fast model computation under different lighting and viewing angles,which meets the actual needs of oilfield operation sites and solves the safety problems of oilfield operation site employees in valve operation.

相似文献/References:

[1]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(05):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[2]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[3]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(05):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[4]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(05):19.
[5]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(05):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[6]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(05):1.
[7]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(05):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[8]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(05):1.
[9]李全兵,文 钊*,田艳梅*,等.基于 WGAN 的音频关键词识别研究[J].计算机技术与发展,2021,31(08):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
 LI Quan-bing,WEN Zhao *,TIAN Yan-mei *,et al.Research on Audio Keywords Recognition Based on WassersteinGenerative Adversarial Network[J].,2021,31(05):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
[10]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(05):7.

更新日期/Last Update: 2022-05-10