[1]胡先智,陈 浩,梁 艳.多模态生物特征信息安全防护体系研究[J].计算机技术与发展,2022,32(04):86-91.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 015]
 HU Xian-zhi,CHEN Hao,LIANG Yan.Research on Information Security Protection System of Multimodal Biometrics Identification[J].,2022,32(04):86-91.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 015]
点击复制

多模态生物特征信息安全防护体系研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年04期
页码:
86-91
栏目:
网络与安全
出版日期:
2022-04-10

文章信息/Info

Title:
Research on Information Security Protection System of Multimodal Biometrics Identification
文章编号:
1673-629X(2022)04-0086-06
作者:
胡先智1 陈 浩2 梁 艳3
1. 西安理工大学 信息化管理处,陕西 西安 710048;
2. 西安理工大学 计算机科学与工程学院,陕西 西安 710048;
3. 西安思源学院 理工学院,陕西 西安 710038
Author(s):
HU Xian-zhi1 CHEN Hao2 LIANG Yan3
1. Division of Information Management,Xi’an University of Technology,Xi’an 710048,China;
2. Faculty of Computer Science and Engineering,Xi’an University of Technology,Xi’an 710048,China;
3. School of Technology,Xi’an Siyuan University,Xi’an 710038,China
关键词:
人工智能多模态生物特征分类分级安全防护全面生命周期
Keywords:
artificial intelligencemultimodal biometricsclassification and gradationsecurity protectionall life cycle
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 04. 015
摘要:
在新的计算能力和深度学习技术推动下,人工智能、大数据发展进入了繁荣期,导致多模态生物特征信息迅猛增加与应用。 由于多模态生物识别具有自然性和多场景应用性,特征信息的采集、识别、分析不仅涉及个人隐私和人格尊严,还主动或被动暴露在现实环境中,高校面临着巨大的信息安全保护需求和风险挑战。 通过对高校多模态生物特征信息安全问题及现状进行分析,提出从基础设施安全防护、网络安全防护、数据安全防护、应用安全防护四个层面构建多模态生物特征信息安全防护框架,并将管理数据防护、业务数据防护、用户鉴别信息防护、分类分级全生命周期信息防护策略与技术相结合,以着力解决不同维度的安全风险和隐患问题。 结合国内高校多模态生物特征信息实施应用情况进行对比分析,验证了所提出的信息防护策略与技术有良好的应用效果,为加强高校多模态生物特征信息防护能力提供借鉴和参考。
Abstract:
Driven by the new computing capabilities and deep learning technology,the development of artificial intelligence and big data has entered a? ?boom period,resulting in the rapid increase and application of multimodal biometric information. Due to the naturalness and multi-scenario application? ?of multimodal biometrics,the collection, identification and analysis of feature information not only involves personal privacy and dignity,but also actively or passively exposed to the real environment. Colleges and universities are facing huge information security protection needs and risk challenges. By analyzing the security problems and current situation of multimodal biometric information in colleges and universities,we propose to build an information security protection framework of multimodal biometrics from four levels: infrastructure security protection, network security protection, data security protection and application security protection.Then strategy and technology are combined? ?by management data protection, business data protection, user identification information protection,classification and all life cycle information protection, which solve the security risks and hidden dangers in different dimensions. A comparative analysis of the implementation and application of multimodal biometric information in domestic colleges and universities verifies the good application effects of the proposed information protection strategy and technology. It provides reference for strengthening the information protection capabilities of multimodal biometrics.

相似文献/References:

[1]张春飞 李万龙 郑山红.Agent技术在智能教学系统中的应用与研究[J].计算机技术与发展,2009,(05):30.
 ZHANG Chun-fei,LI Wan-long,ZHENG Shan-hong.Application and Research of Agent Technology in Intelligent Tutoring System[J].,2009,(04):30.
[2]黄长专 王彪 杨忠.图像分割方法研究[J].计算机技术与发展,2009,(06):76.
 HUANG Chang-zhuan,WANG Biao,YANG Zhong.A Study on Image Segmentation Techniques[J].,2009,(04):76.
[3]张春飞 郑山红 李万龙.基于Agent技术的医疗信息整合研究[J].计算机技术与发展,2009,(10):250.
 ZHANG Chun-fei,ZHENG Shan-hong,LI Wan-long.Research on Integration of Healthcare Enterprise Based on Agent Technology[J].,2009,(04):250.
[4]杜秀全 程家兴.博弈算法在黑白棋中的应用[J].计算机技术与发展,2007,(01):216.
 DU Xiu-quan,CHENG Jia-xing.Game- Playing Algorithm in Black and White Chess Application[J].,2007,(04):216.
[5]孙锦 冯勤超.创造力支持系统[J].计算机技术与发展,2007,(03):138.
 SUN Jin,FENG Qin-chao.Creativity Support System[J].,2007,(04):138.
[6]吉张媛 何华灿.模糊Prolog系统[J].计算机技术与发展,2006,(02):123.
 JI Zhang-yuan,HE Hua-can.Fuzzy Prolog System[J].,2006,(04):123.
[7]丁莹.研究人工智能的一条新途径[J].计算机技术与发展,2012,(03):133.
 DING Ying.A New Avenue of Researching on AI[J].,2012,(04):133.
[8]张代远[].一类新型改进的广义蚁群优化算法[J].计算机技术与发展,2012,(06):39.
 ZHANG Dai-yuan.A New Improved Generalized Ant Colony Optimization Algorithm[J].,2012,(04):39.
[9]于尚超 李阳 王鹏.基于拼凑替换的定理机器证明的研究与实现[J].计算机技术与发展,2012,(06):135.
 YU Shang-chao,LI Yang,WANG Peng.Research and Realization of Theorem Proving Based on Combination and Replace[J].,2012,(04):135.
[10]朱志慧 李雷 种冬梅.改进的BT—SVM应用于电力系统SSA[J].计算机技术与发展,2012,(09):157.
 ZHU Zhi-hui,LI Lei,CHONG Dong-mei.Improved Binary Tree Support Vector Machine and Its Application to Power System Static Security Assessment[J].,2012,(04):157.

更新日期/Last Update: 2022-04-10