[1]卢 岑,沈苏彬.可穿戴装置个性化本地差分隐私保护方案[J].计算机技术与发展,2022,32(02):107-113.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 017]
 LU Cen,SHEN Su-bin.Personalized Local Differential Privacy Protection Scheme for Wearable Devices[J].,2022,32(02):107-113.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 017]
点击复制

可穿戴装置个性化本地差分隐私保护方案()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年02期
页码:
107-113
栏目:
网络与安全
出版日期:
2022-02-10

文章信息/Info

Title:
Personalized Local Differential Privacy Protection Scheme for Wearable Devices
文章编号:
1673-629X(2022)02-0107-07
作者:
卢 岑1 沈苏彬2
1. 南京邮电大学 物联网学院,江苏 南京 210003;
2. 南京邮电大学 计算机学院,江苏 南京 210023
Author(s):
LU Cen1 SHEN Su-bin2
1. School of Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;
2. School of Computer,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
关键词:
本地差分隐私个性化多维数据可穿戴装置随机响应
Keywords:
local differential privacypersonalizationmultidimensional datawearable devicesrandom response
分类号:
TP301
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 02. 017
摘要:
本地差分隐私(local differential privacy,LDP ) 可以对可穿戴装置(wearable devices) 采集到的数据进行隐私保护,每个用户都会在本地扰乱自己的数据,并且将扰动后的数据发送给数据汇聚服务器,以保护用户免受私人信息泄漏的影响。 可穿戴装置采集到的数据是多维的,但是现有的针对可穿戴装置多维数据的个性化本地差分隐私保护研究比较少而且不完善。 针对现有个性化本地隐私方案存在的最坏情况下噪声方差大的问题,采用结合机制,结合随机响应机制和分段机制,对数值型数据进行扰动,提出了一种处理数值型数据的个性化本地差分隐私保护方案,并将该方案应用到多维数值型数据,通过随机采样提高数据可用性。 此外,分别从理论分析和仿真验证的角度对提出的本地差分隐私方案与现有解决方案进行了对比分析和实验。 实验结果表明,提出的方案在最坏情况下的噪声方差方面优于现有解决方案,并且具有更好的数据可用性。
Abstract:
Local differential privacy ( LDP) can protect the privacy of data collected by wearable devices. Each user will disturb his owndata locally and send the disturbed data to the data aggregation server,to protect users from the impact of private information leakage.The data collected by the wearable device is multi - dimensional, but the existing research on personalized local differential privacyprotection for the multi-dimensional data of the wearable device is relatively few and incomplete. Aiming at the problem of large noisevariance in the worst case of the existing personalized local privacy schemes, the combination mechanism, combined with the randomresponse mechanism and the piecewise mechanism, is used to disturb the numerical data, and a personalized local differential privacyprotection scheme for processing numerical data is proposed. The scheme is applied to multi - dimensional numerical data, and dataavailability is improved through random sampling. In addition,comparative analysis and experiments are carried out on the proposed localdifferential privacy scheme and the existing solutions from the perspectives of theoretical analysis and simulation verification.Experimental results show that the proposed scheme is better than existing solutions in terms of noise variance in the worst case,and hasbetter data availability.

相似文献/References:

[1]费洪晓 蒋翀 徐丽娟.基于树状向量空间模型的用户兴趣建模[J].计算机技术与发展,2009,(05):79.
 FEI Hong-xiao,JIANG Chong,XU Li-juan.User Profile Based on Dendriform Vector Space Model[J].,2009,(02):79.
[2]王宏超 陈未如 刘俊.基于客户聚类的商品推荐方法的研究[J].计算机技术与发展,2008,(07):212.
 WANG Hong-chao,CHEN Wei-ru,LIU Jun.Research of Commodity Recommendation System Based on Customer Clustering[J].,2008,(02):212.
[3]邱明明 吴国新.一种个性化垃圾邮件识别系统的设计[J].计算机技术与发展,2007,(01):136.
 QIU Ming-ming,WU Guo-xin.Design of a Personal Spam Detection System[J].,2007,(02):136.
[4]姜雅倩 王直杰 张珏.基于供求关系及协同过滤技术的推荐模型研究[J].计算机技术与发展,2007,(06):18.
 JIANG Ya-qian,WANG Zhi-jie,ZHANG Jue.Research on Recommendation Model Based on Supply and Demand Relation and Collaborative Filtering[J].,2007,(02):18.
[5]吴辉娟 袁方.个性化服务技术研究[J].计算机技术与发展,2006,(02):32.
 WU Hui-juan,YUAN Fang.Research of Technologies on Personalized Information Service[J].,2006,(02):32.
[6]申利民 汪新俊.一个自适应Web站点构架的设计[J].计算机技术与发展,2006,(02):157.
 SHEN Li-min,WANG Xin-jun.A Theoretical Framework for Self Adaptive Web Sites[J].,2006,(02):157.
[7]徐科 崔志明.基于搜索历史的用户兴趣模型的研究[J].计算机技术与发展,2006,(05):18.
 XU Ke,CUI Zhi-ming.User Profile Model Based on User Search Histories[J].,2006,(02):18.
[8]石佑红 赵宏 乔敏.Web挖掘在个性化远程教育中的应用[J].计算机技术与发展,2006,(09):136.
 SHI You-hong,ZHAO Hong,QIAO Min.Web Mining Used in Personalized Distance- Learning[J].,2006,(02):136.
[9]丁兆贵 金敏.基于Lucene的个性化搜索引擎研究与实现[J].计算机技术与发展,2011,(02):105.
 DING Zhao-gui,JIN Min.Research and Implementation of Personal Search Engine Based on Lucene[J].,2011,(02):105.
[10]司广涛 孟静 李光顺.基于P2P网络的个性化协同邮件过滤模型[J].计算机技术与发展,2011,(06):128.
 SI Guang-tao,MENG Jing,LI Guang-shun.Personalized Collaborative E-mail Filtering Model Based on P2P Network[J].,2011,(02):128.

更新日期/Last Update: 2022-02-10