[1]陆缘缘,高华成,崔 衍.改进蚁群算法在快递配送路径中的应用[J].计算机技术与发展,2021,31(11):15-20.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 003]
 LU Yuan-yuan,GAO Hua-cheng,CUI Yan.Application of Improved Ant Colony Algorithm inExpress Delivery Route[J].,2021,31(11):15-20.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 003]
点击复制

改进蚁群算法在快递配送路径中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年11期
页码:
15-20
栏目:
人工智能
出版日期:
2021-11-10

文章信息/Info

Title:
Application of Improved Ant Colony Algorithm inExpress Delivery Route
文章编号:
1673-629X(2021)11-0015-06
作者:
陆缘缘高华成崔 衍
南京邮电大学 物联网学院,江苏 南京 210023
Author(s):
LU Yuan-yuanGAO Hua-chengCUI Yan
School of Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
关键词:
蚁群算法遗传算法启发函数最优解信息素
Keywords:
ant colony algorithmgenetic algorithmheuristic functionoptimal solutionpheromone
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 11. 003
摘要:
蚁群算法作为一种启发式算法,最初是用来解决 TSP(traveling salesman problem) 问题,基本思想来源于自然界蚂蚁觅食的最短路径原理,目前在快递配送中已被广泛使用。 但其前期信息素匮乏导致搜索速度较慢和计算最优路径时迭代次数过多的问题尚未较好地解决。 针对这一问题,提出了一种改进蚁群算法。 首先,通过借鉴遗传算法启发函数的思想,对蚁群算法信息素初始值引入改进启发函数进行动态更新,针对不同情况进行寻优节点选择,解决前期搜索速度较慢的问题。 其次,对信息素更新公式进行改进,引入自适应计算公式,根据每个节点对应的其他节点情况进行信息素更新,使蚁群更有目的的进行路径选择,加快蚁群算法搜索速度并减少迭代次数。 最后,在蚁群算法迭代中引入变异和交叉操作,避免陷入局部最优解。 通过仿真实验可以看出,与传统蚁群算法相比,改进的蚁群算法具有更好的寻优能力,且在收敛速度和迭代次数计算值中有明显提升。
Abstract:
As a heuristic algorithm,the ant colony algorithm was originally used to solve the TSP (traveling salesman problem) . The basic idea is derived from the shortest path principle of ants foraging in nature. It has been widely used in express delivery. However,the lack of pheromone in the? early stage leads to slow search speed and too many iterations when calculating the optimal path,which have not been solved. Aiming at this problem, an improved ant colony algorithm is proposed. Firstly,by drawing on the idea of heuristic function of genetic algorithm,the initial value? ? of ant colony algorithm pheromone is introduced into an improved heuristic function for dynamically updating,and the optimal node selection is carried out according to different situations to solve the problem of slow search speed in the early stage. Secondly,the pheromone update formula is improved, an adaptive calculation formula is introduced,and the pheromone is updated according to the situation of other nodes corresponding to each node, so that the ant colony can make more purposeful path selection,speed up the ant colony algorithm search and reduce the number of iterations. Finally,mutation and crossover operations are introduced in the ant colony algorithm iteration to avoid falling into the local optimal solution. Through the simulation experiment,it can be seen that compared with the traditional ant colony algorithm, the improved ant colony algorithm has better optimization, and the convergence speed and the calculated value of the number of iterations are significantly improved.

相似文献/References:

[1]冯智明,苏一丹,覃华,等.基于遗传算法的聚类与协同过滤组合推荐算法[J].计算机技术与发展,2014,24(01):35.
 FENG Zhi-ming,SU Yi-dan,QIN Hua,et al.Recommendation Algorithm of Combining Clustering with Collaborative Filtering Based on Genetic Algorithm[J].,2014,24(11):35.
[2]段军,张清磊.蚁群算法在LEACH路由协议中的应用[J].计算机技术与发展,2014,24(01):65.
 DUAN Jun,ZHANG Qing-lei.Application of Ant Colony Algorithm Based on LEACH Routing Protocol[J].,2014,24(11):65.
[3]余晓光 严洪森 殷乾坤.基于Flexsim的车间调度优化[J].计算机技术与发展,2010,(03):44.
 YU Xiao-guang,YAN Hong-sen,YIN Qian-kun.Workshops Scheduling Optimization Based on Flexsim Simulation[J].,2010,(11):44.
[4]贺计文 宋承祥 刘弘.基于遗传算法的八数码问题的设计及实现[J].计算机技术与发展,2010,(03):105.
 HE Ji-wen,SONG Cheng-xiang,LIU Hong.Design and Implementation of Eight Puzzle Problem Based on Genetic Algorithms[J].,2010,(11):105.
[5]沈珏萍 庄亚明.基于Agent的二级供应链企业自动谈判研究[J].计算机技术与发展,2010,(03):121.
 SHEN Jue-ping,ZHUANG Ya-ming.A Research for Company Automatic Negotiation in Secondary Supply Chain Based on Agent[J].,2010,(11):121.
[6]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(11):128.
[7]张磊 王晓军.基于遗传算法的业务流程测试[J].计算机技术与发展,2010,(03):155.
 ZHANG Lei,WANG Xiao-jun.Test of Business Process Based on Genetic Algorithm[J].,2010,(11):155.
[8]曹道友 程家兴.基于改进的选择算子和交叉算子的遗传算法[J].计算机技术与发展,2010,(02):44.
 CAO Dao-you,CHENG Jia-xing.A Genetic Algorithm Based on Modified Selection Operator and Crossover Operator[J].,2010,(11):44.
[9]范维博 周俊 许正良.应用遗传算法求解第一类装配线平衡问题[J].计算机技术与发展,2010,(02):194.
 FAN Wei-bo,ZHOU Jun,XU Zheng-liang.Appication of Genetic Algorithm to Assembly Line Balancing[J].,2010,(11):194.
[10]宋世杰 刘高峰 周忠友 卢小亮.基于改进蚁群算法求解最短路径和TSP问题[J].计算机技术与发展,2010,(04):144.
 SONG Shi-jie,LIU Gao-feng,ZHOU Zhong-you,et al.An Improved Ant Colony Algorithm Solving the Shortest Path and TSP Problem[J].,2010,(11):144.
[11]熊伟平 曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,(03):9.
 XIONG Wei-ping,ZENG Bi-qing.Studies on Some Bionic Optimization Algorithms[J].,2010,(11):9.
[12]胡清准,邱晓晖.遗传-蚁群算法在智能交通中的应用[J].计算机技术与发展,2020,30(04):120.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 023]
 HU Qing-zhun,QIU Xiao-hui.Application of Genetic-ant Colony Algorithm in Intelligent Transportation[J].,2020,30(11):120.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 023]
[13]虞馥泽,潘大志.融合遗传算法与蚁群算法的机器人路径规划[J].计算机技术与发展,2021,31(06):198.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 035]
 YU Fu-ze,PAN Da-zhi.Path Planning of Robot by Integrating Genetic Algorithm andAnt Colony Algorithm[J].,2021,31(11):198.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 035]

更新日期/Last Update: 2021-11-10