[1]崔亚楠,吴建平,朱辰龙,等.基于迁移学习仿真 SAR 图像的目标识别研究[J].计算机技术与发展,2021,31(10):43-48.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 008]
 CUI Ya-nan,WU Jian-ping,ZHU Chen-long,et al.Research on Target Recognition Based on CNN Simulated SAR Image Transfer Learning[J].,2021,31(10):43-48.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 008]
点击复制

基于迁移学习仿真 SAR 图像的目标识别研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年10期
页码:
43-48
栏目:
图形与图像
出版日期:
2021-10-10

文章信息/Info

Title:
Research on Target Recognition Based on CNN Simulated SAR Image Transfer Learning
文章编号:
1673-629X(2021)10-0043-06
作者:
崔亚楠1 吴建平123 朱辰龙1 闫相如1
1. 云南大学 信息学院,云南 昆明 650504;
2. 云南省电子计算中心,云南 昆明 650223;
3. 云南省高校数字媒体技术重点实验室,云南 昆明 650223
Author(s):
CUI Ya-nan1 WU Jian-ping123 ZHU Chen-long1 YAN Xiang-ru1
1. School of Information Science & Engineering,Yunnan University,Kunming 650504,China;
2. Yunnan Provincial Electronic Computing Center,Kunming 650223,China;
3. Digital Media Technology Key Laboratory of Universities and Colleges in Yunnan Province,Kunming 650223,China
关键词:
卷积神经网络迁移学习合成孔径雷达仿真 SAR 图像Inception-ResNet-v2
Keywords:
convolutional neural networktransfer learningsynthetic aperture radarsimulated SAR imageInception-ResNet-v2
分类号:
TP753
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 10. 008
摘要:
合成孔径雷达(SAR) 图像的目标识别研究在军事、国防等领域具有特殊的应用价值。 为了更高效、准确地识别SAR 图像中的目标物,实验利用卷积神经网络对 SAR 图像进行训练,以获取良好的识别模型。 但小样本集合的 SAR 图像存在识别效果差,易导致结果过拟合等问题。 为此,研究并提出了一种基于卷积神经网络仿真 SAR 图像迁移学习的目标识别方法。 通过选取数据量较大的仿真 SAR 图像数据集预训练 Inception-ResNet-v2 网络模型,得到相应的网络参数。 结合迁移学习的方法,将预训练模型得到的网络参数迁移到目标模型上作为目标模型的初始化参数,使用 SAR 图像对目标模型进行识别训练,并同步进行参数优化和迭代训练。 实验有效解决了 SAR 图像数据不足所产生的过拟合问题,并且模型识别的准确率得到提升。 通过 MSTAR 数据集验证了该算法的有效性,识别的准确率达到 99. 57% 。
Abstract:
The research of synthetic aperture radar image target recognition has special application value in military,national defense andother fields. In order to recognize targets in SAR images more efficiently and accurately,convolutional neural networks are used for SAR image training to obtain an excellent recognition model through experiments. However,SAR images with small sample sets have poor recognition effects,which may easily lead to problems such as over-fitting of results. To this end,a target recognition method based on convolutional neural network simulation SAR image transfer learning is researched and proposed. A simulation SAR image data set with a large amount of data is selected to pre-train the Inception-ResNet-v2 network model to obtain the corresponding network parameters.Combined with the transfer learning method, the network parameters obtained by the pre - training model are transferred to the target model as the initialization parameters of the target model,and the target model is identified and trained using SAR images,and parameter optimization and iterative training are performed simultaneously. The experiment effectively solves the problem of over fitting caused by insufficient SAR image data,and the accuracy of model recognition is improved. The effectiveness of the algorithm is verified through the MSTAR data set,and the recognition accuracy reaches 99. 57% .

相似文献/References:

[1]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].,2016,26(10):31.
[2]邓宗平,赵启军,陈虎. 基于深度学习的人脸姿态分类方法[J].计算机技术与发展,2016,26(07):11.
 DEND Zong-ping,ZHAO Qi-jun,CHEN Hu. Face Pose Classification Method Based on Deep Learning[J].,2016,26(10):11.
[3]戴晓薇,赵启军. 基于回归的指纹方向场估计[J].计算机技术与发展,2017,27(01):1.
 DAI Xiao-wei,ZHAO Qi-jun. Fingerprint Orientation Field Estimation Based on Regression[J].,2017,27(10):1.
[4]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(10):7.
[5]周成伟. 基于卷积神经网络的自然场景中数字识别[J].计算机技术与发展,2017,27(11):101.
 ZHOU Cheng-wei. Recognition of Numbers in Natural Scene with Convolutional Neural Network[J].,2017,27(10):101.
[6]曲之琳,胡晓飞.基于改进激活函数的卷积神经网络研究[J].计算机技术与发展,2017,27(12):77.[doi:10.3969/ j. issn.1673-629X.2017.12.017]
 QU Zhi-lin,HU Xiao-fei.Research on Convolutional Neural Network Based on Improved Activation Function[J].,2017,27(10):77.[doi:10.3969/ j. issn.1673-629X.2017.12.017]
[7]傅 鹏,谢世朋.基于级联卷积神经网络的车牌定位[J].计算机技术与发展,2018,28(01):134.[doi:10.3969/ j. issn.1673-629X.2018.01.029]
 FU Peng,XIE Shi-peng.License Plate Location Based on Cascaded Convolution Neural Network[J].,2018,28(10):134.[doi:10.3969/ j. issn.1673-629X.2018.01.029]
[8]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].,2018,28(10):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[9]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(10):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[10]郭子琰,舒心,刘常燕,等.基于ReLU 函数的卷积神经网络的花卉识别算法[J].计算机技术与发展,2018,28(05):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
 GUO Ziyan,SHU Xin,LIU Changyan,et al.A Recognition Algorithm of Flower Based on Convolution Neural Network with ReLU Function[J].,2018,28(10):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
[11]王泽泓,刘厚泉.基于迁移学习与自适应特征融合的建筑物识别[J].计算机技术与发展,2019,29(12):40.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 007]
 WANG Ze-hong,LIU Hou-quan.Building Recognition Based on Transfer Learning and Adaptive Feature Fusion[J].,2019,29(10):40.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 007]
[12]龚 安,井晓萌.多卷积神经网络模型融合的农作物病害图像识别[J].计算机技术与发展,2020,30(08):134.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 023]
 GONG An,JING Xiao-meng.Image Recognition of Crop Diseases Based on Multi-convolution Neural Network Model Ensemble[J].,2020,30(10):134.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 023]
[13]龚 安,郭文婷.基于卷积神经网络的皮肤癌识别方法[J].计算机技术与发展,2020,30(10):167.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 030]
 GONG An,GUO Wen-ting.Skin Cancer Image Classification Method Based on Convolutional Neural Network[J].,2020,30(10):167.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 030]
[14]袁小平,石 慧.基于迁移学习的鱼类识别方法研究[J].计算机技术与发展,2021,31(04):52.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 009]
 YUAN Xiao-ping,SHI Hui.Research on Fish Recognition Method Based on Transfer Learning[J].,2021,31(10):52.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 009]
[15]黄贤山,卢 冶,张小立,等.基于迁移学习的灰铸铁金相组织分类研究[J].计算机技术与发展,2021,31(增刊):21.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 004]
 HUANG Xian-shan,LU Ye,ZHANG Xiao-li,et al.Research on Classification of Gray Cast Iron Metallographic Structure Based on Transfer Learning[J].,2021,31(10):21.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 004]
[16]俞圳韬,刘万里,杨晓辉,等.基于贝叶斯优化和迁移学习的 CNN 算法研究[J].计算机技术与发展,2022,32(S2):68.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 012]
 YU Zhen-tao,LIU Wan-li,YANG Xiao-hui,et al.Research on CNN Algorithm Based on BayesianOptimization and Transfer Learning[J].,2022,32(10):68.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 012]
[17]白雪松,吴建平,景文超,等.基于卷积神经网络的农作物病虫害检测研究[J].计算机技术与发展,2022,32(12):200.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 030]
 BAI Xue-song,WU Jian-ping,JING Wen-chao,et al.Research on Crop Diseases and Pests Detection Based on Convolutional Neural Network[J].,2022,32(10):200.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 030]
[18]张国有,高 希.融合注意力的轻量型垃圾分类研究[J].计算机技术与发展,2023,33(03):49.[doi:10. 3969 / j. issn. 1673-629X. 2023. 03. 008]
 ZHANG Guo-you,GAO Xi.Research on Lightweight Garbage Sorting with Fusion Attention[J].,2023,33(10):49.[doi:10. 3969 / j. issn. 1673-629X. 2023. 03. 008]

更新日期/Last Update: 2021-10-10