[1]陈 莹,叶 宁,徐 康,等.基于领域特征指示词的隐式特征识别研究[J].计算机技术与发展,2021,31(09):24-30.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 005]
 CHEN Ying,YE Ning,XU Kang,et al.Research on Implicit Feature Identification Based on Domain Feature Indicators[J].,2021,31(09):24-30.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 005]
点击复制

基于领域特征指示词的隐式特征识别研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年09期
页码:
24-30
栏目:
大数据分析与挖掘
出版日期:
2021-09-10

文章信息/Info

Title:
Research on Implicit Feature Identification Based on Domain Feature Indicators
文章编号:
1673-629X(2021)09-0024-07
作者:
陈 莹12 叶 宁12 徐 康12 王汝传12
1. 南京邮电大学 计算机学院、软件学院、网络空间安全学院,江苏 南京 210046;
2. 江苏省无线传感网高技术研究重点实验室,江苏 南京 210046
Author(s):
CHEN Ying12 YE Ning12 XU Kang12 WANG Ru-chuan12
1. School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210046,China;
2. Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks,Nanjing 210046,China
关键词:
产品评论语义分析显式特征隐式特征主题模型词向量
Keywords:
product-reviewssemantic analysisexplicit featureimplicit featuretopic-modelWord2Vec
分类号:
TP391. 1
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 09. 005
摘要:
网络购物这一领域的迅猛发展带来了海量的在线评论数据,挖掘评论数据中所蕴藏的语义以及情感信息对用户以及商家都有着莫大的价值。 在这样的应用需求背景下,出现了针对文本的情感分析(sentiment analysis)技术。 但由于中文语言表达的多样性与复杂性,用户会在评论中含蓄地提到评价属性与观点。 而现有研究对包含显式特征评论文本的情感分析已趋渐成熟,针对隐式评论句进行特征识别的却较少。 因此,文中面向隐式特征识别这一研究难点,提出一种基于领域特征指示词的隐式特征识别方法。 该方法首先利用构建的多词型的主题情感联合模型对特定领域内的显式评论句进行特征类别指示词的挖掘;再引入词向量模型作为衡量隐式评论句中线索词与特征指示词集中词项语义相关度的标准;最后分情形来实现对隐式评论句中线索词所属特征类别的指派。 通过对不同产品的评论数据集进行实验,结果证明了该方法的有效性。
Abstract:
The rapid development of online shopping has brought a huge amount of online review data. The semantic and emotional information contained in the review data is of great value to both users and merchants.? ? ? ? ? ? In this context of application requirements,sentiment analysis for text has emerged. Due to the diversity and complexity of Chinese language expression,users will implicitly mention evaluation attributes and opinions in comments. The methods of mining comments with display feature have become more and more mature,but the research on implicit feature identification is less. Therefore,an implicit feature identification method based on domain feature indicators is proposed for implicit feature identification. Firstly,the constructed multi-word thematic affective association model is used to mine the feature category indicators of the display comments in a specific field. The word2vec is used as a criterion to measure the semantic relevance between the clue word and the feature indicator word in implicit comments. Finally, the assignment of the characteristic category of the clue words in the implicit comment is realized by case analysis. The effectiveness of the proposed method is demonstrated by experiments on review data sets of different products.

相似文献/References:

[1]汪畅 王铮 张胜歧.基于动词属性的模板化自动代码生成[J].计算机技术与发展,2010,(05):104.
 WANG Chang,WANG Zheng,ZHANG Sheng-qi.Template Automatic Code Generation Based on Properties of the Verb[J].,2010,(09):104.
[2]袁浩 黄烟波.网页标题分析对主题爬虫的改进[J].计算机技术与发展,2009,(06):22.
 YUAN Hao,HUANG Yan-bo.Analysis of Title Page to Improve Focus Crawler[J].,2009,(09):22.
[3]陈国华 赵克 李亚涛 易帅.自然语言处理系统中的事件类名词的耦合处理[J].计算机技术与发展,2008,(06):60.
 CHEN Guo-hua,ZHAO Ke,LI Ya-tao,et al.Coupling Processing of Event Noun in NLP Systems[J].,2008,(09):60.
[4]丰博 胡钢伟 赵克 亿珍珍.一种自反馈汉语切词系统的研究和实现[J].计算机技术与发展,2006,(05):7.
 FENG Bo,HU Gang-wei,ZHAO Ke,et al.Research and Realization on Self-Feeding Back Chinese Words Segmentation System[J].,2006,(09):7.
[5]王文霞. 基于分级策略和聚类索引树的构件检索方法[J].计算机技术与发展,2016,26(04):110.
 WANG Wen-xia. A Component Retrieval Method Based on Classified Policy and Cluster Index Tree[J].,2016,26(09):110.
[6]张景,牛耘. 中文微博评价对象识别研究[J].计算机技术与发展,2017,27(01):6.
 ZHANG,Jing NIU Yun. Research on Opinion Target Extraction in Chinese Microblogs[J].,2017,27(09):6.
[7]刘高军,印佳明.基于图书特征及词典的豆瓣图书垃圾评论识别[J].计算机技术与发展,2019,29(11):107.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 022]
 LIU Gao-jun,YIN Jia-ming.Identification of Douban Book Spam Comments Based on Book Features and Dictionary[J].,2019,29(09):107.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 022]
[8]高洁云,赵逢禹,刘 亚.基于语义增强的改进混合特征选择的文本分类[J].计算机技术与发展,2021,31(01):24.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 005]
 GAO Jie-yun,ZHAO Feng-yu,LIU Ya.Text Classification of Modified Hybrid Feature Selection Based on Semantic Enhancement[J].,2021,31(09):24.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 005]

更新日期/Last Update: 2021-09-10