[1]柯宏宇,高奕宁,郝雪营,等.基于信道信息的回放攻击检测研究[J].计算机技术与发展,2021,31(06):118-122.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 021]
 KE Hong-yu,GAO Yi-ning,HAO Xue-ying,et al.Research on Replay Attack Detection Based on Channel Information[J].,2021,31(06):118-122.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 021]
点击复制

基于信道信息的回放攻击检测研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年06期
页码:
118-122
栏目:
网络与安全
出版日期:
2021-06-10

文章信息/Info

Title:
Research on Replay Attack Detection Based on Channel Information
文章编号:
1673-629X(2021)06-0118-05
作者:
柯宏宇1 高奕宁1 郝雪营1 黄 涛12
1. 武汉邮电科学研究院,湖北 武汉 430074;
2. 武汉烽火众智数字技术有限责任公司,湖北 武汉 430074
Author(s):
KE Hong-yu1 GAO Yi-ning1 HAO Xue-ying1 HUANG Tao12
1. Wuhan Research Institute of Posts and Telecommunications,Wuhan 430074,China;
2. Wuhan Fiberhome Zhongzhi Digital Technology Co. ,Ltd. ,Wuhan 430074,China
关键词:
语音识别信号处理信道攻击机器学习决策融合
Keywords:
speech recognitionsignal processingchannel attacksmachine learningdecision fusion
分类号:
TN391. 42
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 06. 021
摘要:
生物识别具有广阔的研究前景,说话人识别作为生物识别的重要组成部分,涉及人们日常生活的许多方面。 随着高保真录音及回放设备的普及,说话人识别系统的安全性面临回放攻击的严重挑战,由于回放攻击语音与真实语音具有相同的声纹,导致常规说话人识别很难有效鉴别声音的真实性,且生活中存在的噪声,会在一定程度上干扰系统的识别,这也对系统的鲁棒性提出了要求。 因此,该文提出一种基于信道信息的录音回放攻击检测方法,提取 Legendre 系数及其统计特征为主要判别依据,同时使用语音基频特征与 MFCC 特征作为辅助特征,并使用一种基于支持向量机的决策融合算法进行判别,给予特征不同的权重。 实验结果表明,多种特征相结合的方式,相较于现有其他方法,能在有效检测回放语音攻击的同时,提升系统的鲁棒性,在噪声环境下识别率平均提高了 1. 5% 。
Abstract:
Bio-metrics has broad research prospects. As an important component of bio-metrics,speaker recognition involves many aspects of people’s daily lives. With the popularity of high - fidelity recording and playback equipment, the security of speaker recognition systems is facing serious challenges from playback attacks.? As the playback attack voice has the same voice print as the real voice,it is difficult for conventional speaker recognition to effectively identify the authenticity of the voice. In addition,the noise in life will interfere with the recognition of the system to a certain extent,which also puts forward requirements for the robustness of the system. Therefore,we propose a detection method for recording and playback attacks based on channel information,extracting Legendre coefficients and their statistical features as the main criterion,using speech fundamental frequency features and MFCC features as auxiliary features,and using a support vector machine -based decision fusion algorithm judges by giving different weights to the features. Experiment shows that compared with other existing methods,the combination of multiple features can effectively detect playback speech attacks while improving the robustness of the system. The recognition rate in a noisy environment is increased by an average of 1. 5% .

相似文献/References:

[1]宋鑫坤 陈万米 朱明 桂春胜 程硕远 陈海波.基于正则表达式的语音识别控制策略研究[J].计算机技术与发展,2010,(02):106.
 SONG Xin-kun,CHEN Wan-mi,ZHU Ming,et al.Study on Speech Recognition Control Strategy Based on Regular Expression[J].,2010,(06):106.
[2]李海东 李青.基于阈值法的小波去噪算法研究[J].计算机技术与发展,2009,(07):56.
 LI Hai-dong,LI Qing.Wavelet Denoising Based on Technique of Threshold[J].,2009,(06):56.
[3]贾丽会 张修如.分形理论及在信号处理中的应用[J].计算机技术与发展,2007,(09):203.
 JIA Li-hui,ZHANG Xiu-ru.Fractal Theory and Its Application in Signal Processing[J].,2007,(06):203.
[4]何韬 梁栋 李瑶 董瑞.小波变换在电力谐波分析中的应用[J].计算机技术与发展,2007,(01):229.
 HE Tao,LIANG Dong,LI Yao,et al.Application of Wavelet Transform in Harmonic Analysis of Power[J].,2007,(06):229.
[5]石现峰 张学智 张峰.基于HTK的语音识别系统设计[J].计算机技术与发展,2006,(10):37.
 SHI Xian-feng,ZHANG Xue-zhi,ZHANG Feng.Design of Speech Recognition System Based on HTK[J].,2006,(06):37.
[6]朱宇 宋艳.嵌入式语音识别系统特征参数提取研究[J].计算机技术与发展,2011,(07):246.
 ZHU Yu,SONG Yan.Research of Characteristic Parameters Extraction Based on Embedded Speech Recognition System[J].,2011,(06):246.
[7]林鸣霄.基于SpeechSDK的语音识别技术在三维仿真中的应用[J].计算机技术与发展,2011,(11):160.
 LIN Ming-xiao.Application of Speech Recognition Technology in 3D Simulation Based on Speech SDK[J].,2011,(06):160.
[8]李克粉,王直.改进的小波阈值去噪在语音识别中的应用[J].计算机技术与发展,2013,(05):231.
 LI Ke-fen,WANG Zhi.Application of Improved Wavelet Threshold Denoising in Speech Recognition[J].,2013,(06):231.
[9]刘石山,赵建军,岳奇.基于双树复小波变换的X射线脉冲星信号处理[J].计算机技术与发展,2014,24(03):168.
 LIU Shi-shan,ZHAO Jian-jun,YUE Qi.X-ray Pulsar Signal Processing Based on Dual Tree Complex Wavelet Transform[J].,2014,24(06):168.
[10]汪琦,陶亮. 基于DCT的实值离散Gabor变换最优窗宽选择[J].计算机技术与发展,2014,24(10):55.
 WANG Qi,TAO Liang. Optimal Window Width Selection for Real-valued Discrete Gabor Transform Based on DCT[J].,2014,24(06):55.

更新日期/Last Update: 2021-06-10