[1]陈 鹏,鲍天嘉智,余肖生.基于多相似度融合的药物重定位推荐算法[J].计算机技术与发展,2021,31(01):168-174.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 030]
 CHEN Peng,BAO Tian-jiazhi,YU Xiao-sheng.Recommendation Algorithm for Drug Repositioning Based onMulti-similarity Fusion[J].,2021,31(01):168-174.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 030]
点击复制

基于多相似度融合的药物重定位推荐算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年01期
页码:
168-174
栏目:
应用前沿与综合
出版日期:
2021-01-10

文章信息/Info

Title:
Recommendation Algorithm for Drug Repositioning Based onMulti-similarity Fusion
文章编号:
1673-629X(2021)01-0168-07
作者:
陈 鹏鲍天嘉智余肖生
三峡大学 计算机与信息学院,湖北 宜昌 443002
Author(s):
CHEN PengBAO Tian-jiazhiYU Xiao-sheng
School of Computer and Information,Three Gorges University,Yichang 443002,China
关键词:
药物重定位协同过滤数据稀疏性相似度融合预测值融合
Keywords:
drug repositioningcollaborative filteringdata sparsitysimilarity fusionpredictive value fusion
分类号:
TP399
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 01. 030
摘要:
药物重定位算法可以为发现药物的新用途提供理论上的支持。 针对传统药物重定位推荐算法的不足,提出一种基于多相似度融合的药物重定位推荐算法( MSF) 。 首先通过药物-疾病数据源计算出疾病相似度,再通过药物-化学结构、药物-靶蛋白以及药物-副作用数据源计算出三种相似度并融合为药物相似度,最后利用两种相似度计算药物与疾病对应关系的预测值,并通过预测值融合方法融合为最终预测值。 实验结果表明,与 SLAMS 算法和 DRCFFS 算法相比,MSF 算法在精确率和召回率上有较大的提高;与针对单个数据源的药物重定位算法相比,通过融合多种数据源,预测值的可靠性和精确性都有进一步的提升。 案例分析显示,MSF 算法可以有效地预测出有治疗效果的药物-疾病组合。
Abstract:
Drug repositioning algorithms can provide theoretical support for discovering new uses of drugs. To overcome the shortcomings of traditional drug relocation recommendation algorithm, we propose a drug repositioning recommendation (MSF) based on multi-similarity fusion. Disease similarity is calculated by drug-disease data sources,and then three similarities are fused into drug similarity by drug-chemical structure, drug-target protein and drug-side effect data sources. Finally, two similarities are used to calculate the predicted value and fuse it into the final predicted value. The experiment shows that compared with SLAMS and DRCFFS,MSF has a greater improvement in accuracy and recall rate. Compared with collaborative filtering algorithm for a single data source, the reliability and accuracy of predicted values are further improved by fusing multiple data sources. Case analysis shows that MSF can effectively predict drug-disease combination with therapeutic effect.

相似文献/References:

[1]邵延振 蒙韧 袁鼎荣 李新友.基于Web结构分区的协同过滤推荐算法研究[J].计算机技术与发展,2010,(06):67.
 SHAO Yan-zhen,MENG Ren,YUAN Ding-rong,et al.Collaborative Filtering Recommendation Algorithm Research Based on Web Blocks[J].,2010,(01):67.
[2]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(01):69.
[3]姜雅倩 王直杰 张珏.基于供求关系及协同过滤技术的推荐模型研究[J].计算机技术与发展,2007,(06):18.
 JIANG Ya-qian,WANG Zhi-jie,ZHANG Jue.Research on Recommendation Model Based on Supply and Demand Relation and Collaborative Filtering[J].,2007,(01):18.
[4]游文 叶水生.电子商务推荐系统中的协同过滤推荐[J].计算机技术与发展,2006,(09):70.
 YOU Wen,YE Shui-sheng.A Survey of Collaborative Filtering Algorithm Applied in E- commerce Recommender System[J].,2006,(01):70.
[5]徐红 彭黎 郭艾寅 徐云剑.基于用户多兴趣的协同过滤策略改进研究[J].计算机技术与发展,2011,(04):73.
 XU Hong,PENG Li,GUO Ai-yin,et al.User-Based Collaborative Filtering Strategies More Interested in Improvement of Research[J].,2011,(01):73.
[6]杨东风 牛永洁.基于混合规则的图书推荐模型设计与研究[J].计算机技术与发展,2011,(07):210.
 YANG Dong-feng,NIU Yong-jie.Books Recommended Model Design and Research Based on Mixing Rules[J].,2011,(01):210.
[7]吴月萍 王娜 马良.基于蚁群算法的协同过滤推荐系统的研究[J].计算机技术与发展,2011,(10):73.
 WU Yue-ping,WANG Na,MA Liang.Research of Collaboration Filtering Recommendation System Based on Ant Algorithm[J].,2011,(01):73.
[8]李克潮,蓝冬梅.一种属性和评分的协同过滤混合推荐算法[J].计算机技术与发展,2013,(07):116.
 LI Ke-chao,LAN Dong-mei.A Collaborative Filtering Hybrid Recommendation Algorithm for Attribute and Rating[J].,2013,(01):116.
[9]范虎,花伟伟.协同过滤推荐算法的研究与改进[J].计算机技术与发展,2013,(09):66.
 FAN Hu[],HUA Wei-wei[].Research and Improvement of Collaborative Filtering Recommendation Algorithm[J].,2013,(01):66.
[10]李振博,徐桂琼,査九. 基于用户谱聚类的协同过滤推荐算法[J].计算机技术与发展,2014,24(09):59.
 LI Zhen-bo,XU Gui-qiong,ZHA Jiu. A Collaborative Filtering Recommendation Algorithm Based on User Spectral Clustering[J].,2014,24(01):59.

更新日期/Last Update: 2020-01-10