[1]漆世钱.基于轮廓识别和 BGR 颜色空间的车牌定位[J].计算机技术与发展,2020,30(12):176-180.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 031]
 QI Shi-qian.License Plate Location Based on Contour Recognition and BGR Color Space[J].,2020,30(12):176-180.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 031]
点击复制

基于轮廓识别和 BGR 颜色空间的车牌定位()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年12期
页码:
176-180
栏目:
应用开发研究
出版日期:
2020-12-10

文章信息/Info

Title:
License Plate Location Based on Contour Recognition and BGR Color Space
文章编号:
1673-629X(2020)12-0176-05
作者:
漆世钱
武警海警学院 电子技术系,浙江 宁波 315801
Author(s):
QI Shi-qian
Department of Electronic Technology,China Coast Guard Academy,Ningbo 315801,China
关键词:
车牌定位轮廓识别BGR 处理矩形筛选角度倾斜
Keywords:
license plate locationcontour recognitionBGR processingrectangular screeningangle tilt
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 12. 031
摘要:
车牌定位技术是车牌识别系统的关键步骤,车牌定位的效果会影响后面对车牌字符分割和识别的成功率,进一步影响整个车牌识别系统的成功率和识别速度。 为解决车牌在角度偏移、光照不均匀的影响下定位难、定位慢的问题,提出一种基于轮廓识别和 BGR 颜色空间的车牌定位方法。 将车牌定位分为粗定位和精细定位两部分,粗定位利用轮廓识别技术找出车牌的大致区域,基本步骤包括轮廓检测、矩形区域识别、矩形筛选和截取;在精细定位中,对图像逐像素点遍历,读取各点的 B、G、R 值,通过 BGR 处理提取车牌关键位置,然后校正和截取可能倾斜的车牌图像。 实验结果表明,在常规环境中,该方法对车牌的定位准确度高达 96.5% ,算法运行时间低至 612 ms,达到了预期效果。
Abstract:
License plate location technology is the key step of license plate recognition system. The effect of license plate location will affect the success rate of license plate character segmentation and recog-nition, and further affect the success rate and recognition speed of the whole license plate recognition system. In order to solve the problem of difficult location and slow location of license plate under the influence of angle offset and uneven illumination,a license plate location method based on contour recognition and BGR color space is proposed. The license plate location is divided into two parts: rough location and fine location. Rough location uses contour recognition technology to find out the approximate area of license plate. The basic steps include contour detection,rectangular area reco-gnition,rectangular filtering and interception. In fine location,the image is traversed pixel by pixel,the B,G and R values of each point are read,the key position of license plate is extracted through BGR processing,and then the possibly tilted license plate image is corrected and intercepted. The experiment shows that in the conventional environment,the accuracy of the proposed method is as high as 96.5% ,and the running time of the algorithm is as low as 612 ms.

相似文献/References:

[1]黄鑫娟 房岩 周洁敏 刘伯扬 王占军 陶思钰.基于改进模糊熵的车牌定位方法[J].计算机技术与发展,2010,(01):189.
 HUANG Xin-juan,FANG Yan,ZHOU Jie-min,et al.A License Plate Location Method Based on Improved Fuzzy Entropy[J].,2010,(12):189.
[2]郭航宇 景晓军 尚勇.基于小波变换和数学形态法的车牌定位方法研究[J].计算机技术与发展,2010,(05):13.
 GUO Hang-yu,JING Xiao-jun,SHANG Yong.License Plate Location Method Based on Wavelet Transform and Mathematical Morphology[J].,2010,(12):13.
[3]王森 陈炬桦.基于神经网络和综合特征的车牌定位算法[J].计算机技术与发展,2008,(02):38.
 WANG Sen,CHEN Ju-hua.Algorithm of Car Plate Location Based on Neural Network and Integrated Features[J].,2008,(12):38.
[4]杨述斌 张阳.复杂车辆图像中的车牌快速形态定位算法[J].计算机技术与发展,2008,(06):50.
 YANG Shu-bin,ZHANG Yang.Fast Morphological Locating Algorithm of Vehicle License Plate in Complex Vehicle Images[J].,2008,(12):50.
[5]朱光忠 黄云龙 余世明.边缘检测算子在汽车牌照区域检测中的应用[J].计算机技术与发展,2006,(03):161.
 ZHU Guang-zhong,HUANG Yun-long,YU Shi-ming.Application of Edge Detection Operators in Region Detection of Automobile License Plate[J].,2006,(12):161.
[6]李波 曾致远 周建中 罗勤.车牌识别系统研究与实现[J].计算机技术与发展,2006,(06):10.
 LI Bo,ZENG Zhi-yuan,ZHOU Jian-zhong,et al.Study and Realization for License Plate Recognition System[J].,2006,(12):10.
[7]李庆庆 张燕平.基于模糊边缘检测算法的车牌定位[J].计算机技术与发展,2006,(12):7.
 LI Qing-qing,ZHANG Yan-ping.License Plate Location Based on Fuzzy Edge Detection[J].,2006,(12):7.
[8]孟晓莉 赵安军 马光思.基于数学形态学的车牌定位研究与实现[J].计算机技术与发展,2010,(11):84.
 MENG Xiao-li,ZHAO An-jun,MA Guang-si.Car License Plate Location Research and Implementation Based on Mathematical Morphology[J].,2010,(12):84.
[9]王允强 吴涛 张方方.基于数学形态学的实用车牌定位算法及实现[J].计算机技术与发展,2010,(11):166.
 WANG Yun-qiang,WU Tao,ZHANG Fang-fang.Utilitarian Locating Plates Algorithm Designation Based on Mathematical Morphology[J].,2010,(12):166.
[10]徐丽珍.AdaBoost车牌检测算法的优化与实现[J].计算机技术与发展,2013,(06):86.
 XU Li-zhen.Optimization and Realization of AdaBoost-based License Plate Detection Algorithm[J].,2013,(12):86.

更新日期/Last Update: 2020-12-10