[1]王 娜,李劲松,姚明海.基于特征子集与特征区分度的生物认证方法[J].计算机技术与发展,2020,30(12):51-55.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 009]
 WANG Na,LI Jin-song,YAO Ming-hai.Biometric Authentication Method Based on Feature Subset and Feature Discrimination[J].,2020,30(12):51-55.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 009]
点击复制

基于特征子集与特征区分度的生物认证方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年12期
页码:
51-55
栏目:
智能、算法、系统工程
出版日期:
2020-12-10

文章信息/Info

Title:
Biometric Authentication Method Based on Feature Subset and Feature Discrimination
文章编号:
1673-629X(2020)12-0051-05
作者:
王 娜李劲松姚明海
渤海大学 信息科学与技术学院,辽宁 锦州 121013
Author(s):
WANG NaLI Jin-songYAO Ming-hai
School of Information Science and Technology,Bohai University,Jinzhou 121013,China
关键词:
特征选择随机子空间费舍尔得分生物认证特征融合
Keywords:
feature selectionrandom subspaceFisher scorebiometric authenticationfeature fusion
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 12. 009
摘要:
生物认证是信息安全领域研究的热点问题,已经成为社会安全各个领域用于身份识别的重要技术手段。随着数字图像获取技术和采集设备的快速发展,生物认证图像数据在采集过程中往往会出现高维度、高冗余现象。 为了解决生物认证数据在计算过程中出现的维度高、冗余信息多、计算复杂度高的问题,在生物数据处理过程中构建了基于特征子集与特征区分度的特征选择方法。 该方法首先利用改进的随机子空间方法和费舍尔得分法分别对特征排序;然后,将两种方法选择的特征结果进行加权融合得到全新的特征排序;最后,利用顺序前向搜索策略进行特征选择。 为验证方法的有效性,将该方法与传统方法分别在五个经典的生物认证数据库上进行了比较。 实验结果证明该方法获得了非常高的识别准确度。
Abstract:
Biometric authentication is a hotspot issue in the information security field,which has become an important technical means for identity recognition in various fields of social security. With the rapid development of digital image acquisition technology and shooting equipment, high dimension and high redundancy often appear in the process of biological image data acquisition. In this paper, the biometric methods based on feature subset and feature discrimination is proposed to solve the problem of the biometric authentication data high dimensionality and redundancy. Firstly,modified random subspace method and Fisher score method are employed to pre-rank the feature. Then,the new feature ranking is obtained by fusing the feature selection results. Finally,sequential forward search method is utilized to select the most significant feature subset. In order to verify its effectiveness, the proposed method is compared with the traditional method on five classic biometric authentica-tion databases. The experiment shows that the proposed method has high recognition accuracy.

相似文献/References:

[1]刘利 何先平 袁文亮.股票趋势预测中Wrapper方法的研究与应用[J].计算机技术与发展,2010,(01):209.
 LIU Li,HE Xian-ping,YUAN Wen-liang.Research and Application of Wrapper Approach to Stock Trend Prediction[J].,2010,(12):209.
[2]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(12):21.
[3]张家柏 王小玲.基于聚类和二进制PSO的特征选择[J].计算机技术与发展,2010,(06):25.
 ZHANG Jia-bai,WANG Xiao-ling.A Novel Algorithm Based on K-Means Clustering and Binary Particle Swarm Optimization[J].,2010,(12):25.
[4]冯甲策 叶明 王惠文.基于Gram—Schmidt过程的支持向量机降维方法[J].计算机技术与发展,2009,(11):7.
 FENG Jia-ce,YE Ming,WANG Hui-wen.Dimension Reduction Method of Support Vector Machine Based on Gram- Schmidt Process[J].,2009,(12):7.
[5]林伟 柳荣其 徐熙.邮件过滤中一种改进的特征选择方法研究[J].计算机技术与发展,2009,(01):84.
 LIN Wei,LIU Rong-qi,XU Xi.Improvement of Feature Selection Algorithm in Spam Filtering[J].,2009,(12):84.
[6]刘毅 张月琳.基于Agent的邮件过滤与个性化分类系统设计[J].计算机技术与发展,2009,(02):66.
 LIU Yi,ZHANG Yue-lin.Design of a Mail Filter and Personalized Classification System Based on Agent[J].,2009,(12):66.
[7]陈素萍 谢丽聪.一种文本特征选择方法的研究[J].计算机技术与发展,2009,(02):112.
 CHEN Su-ping,XIE Li-cong.Research on Document Feature Selection[J].,2009,(12):112.
[8]段震 王倩倩 张燕平 张铃.覆盖算法下文本分类特征选择的研究[J].计算机技术与发展,2008,(11):29.
 DUAN Zhen,WANG Qian-qian,ZHANG Yan-ping,et al.Study on Feature Selection of Text Classification in Cross Cover Algorithm[J].,2008,(12):29.
[9]王希雷.基于Rough集理论的车牌汉字特征提取[J].计算机技术与发展,2007,(06):26.
 WANG Xi-lei.Car Plate Chinese Character Feature Extraction Based on Rough Set Theory[J].,2007,(12):26.
[10]董梅 胡学钢.基于多特征选择的中文文本分类[J].计算机技术与发展,2007,(07):117.
 DONG Mei,HU Xue-gang.Text Categorization Based on Multiple Features Selection[J].,2007,(12):117.
[11]韦艳艳 李陶深.基于特征选择的集成分类器抗噪性能分析[J].计算机技术与发展,2012,(11):161.
 WEI Yan-yan,LI Tao-shen.Anti-noise Performance Analysis of Classifiers Ensembles Based on Feature Selection[J].,2012,(12):161.

更新日期/Last Update: 2020-12-10