[1]江 芳,张其亮,邵 倩,等.基于机器视觉的铣刀破损自动化检测研究 [J].计算机技术与发展,2020,30(10):194-198.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 034]
 JIANG Fang,ZHANG Qi-liang,SHAO Qian,et al.Study of Automatic Detection of Milling Cutter Damage Based on Machine Vision[J].,2020,30(10):194-198.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 034]
点击复制

基于机器视觉的铣刀破损自动化检测研究
()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年10期
页码:
194-198
栏目:
应用开发研究
出版日期:
2020-10-10

文章信息/Info

Title:
Study of Automatic Detection of Milling Cutter Damage Based on Machine Vision
文章编号:
1673-629X(2020)10-0194-05
作者:
江 芳张其亮邵 倩王雯雯
江苏科技大学 电气与信息工程学院,江苏 张家港 215600
Author(s):
JIANG FangZHANG Qi-liangSHAO QianWANG Wen-wen
School of Electrical and Information Engineering,Jiangsu University of Science and Technology, Zhangjiagang 215600,China
关键词:
机器视觉铣刀破损检测阈值分割角点定位
Keywords:
machine visionmilling cutterdefect detectionthreshold segmentationcorner detection
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 10. 034
文献标志码:
A
摘要:
随着中国工业智能化的进程不断加快,对刀具工件的质量和生产效率提出了越来越高的要求,及时掌握铣刀的质 量好坏,对于提高生产效率与产品质量具有重要的现实意义。 针对人工检测铣刀破损存在不稳定、效率低、成本高等缺 点,提出了一种基于机器视觉的铣刀破损自动化检测方法。 首先由工业 CCD 相机从不同角度自动采集铣刀的多幅图像, 应用双边滤波、分段线性变换、大津法阈值分割方法对图像进行预处理。 确定铣刀刀具尖端点并在捕获的刀具磨损图像 内优化破损检测区域。 根据铣刀的形状特征提出基于特征角点定位的破损检测方法,检测刀片的实际边界并拟合出理论 边界,实现对铣刀是否存在破损的自动化检测。 实验结果表明,该系统能够实现铣刀破损的快速检测,且检测质量较高, 满足了实际应用需求。
Abstract:
With the development of China’ s industrial intelligentization,higher and higher requirements have been put forward for the quality and production efficiency of tool workpieces. Therefore,it is of great practical significance to know the milling cutter quality in time. Aiming at the disadvantages? ? ? of instability,low efficiency and high cost in manual detection of milling cutter damage,we propose an automatic detection method of milling cutter damage based on machine vision. Firstly,multiple images of milling cutter are acquired automatically by industrial CCD camera from different angles,and the images are preprocessed by bilateral filtering,piecewise linear transformation and Otsu threshold segmentation. Then determine? ?the tip of the milling cutter and optimize the fracture detection area within the captured tool wear image. According to the shape features of milling cutter,a defect detection method based on feature corner points is proposed to detect the actual boundary of the blade and fit the theoretical boundary, so as to realize the automatic detection of whether the milling cutter is damaged or not. The experiment shows that the system can realize the rapid detection of the milling cutter damage with high detection quality,which meets the practical application requirements.

相似文献/References:

[1]王明平 宋丽梅.基于计算机视觉的车架号采集系统[J].计算机技术与发展,2008,(04):239.
 WANG Ming-ping,SONG Li-mei.Vehicle Identify Number Acquisition System Based on Machine-Vision[J].,2008,(10):239.
[2]蒋恩松 肖辉军 孙刘杰 熊清廉.基于机器视觉的套印误差自动检测系统设计[J].计算机技术与发展,2008,(07):173.
 JIANG En-song,XIAO Hui-jun,SUN Liu-jie,et al.Design of Automatic Detecting Printing Registration Deviation System Based on Machine Vision[J].,2008,(10):173.
[3]张锦娟 师军 于佳丽 卢照.SpikeNet的研究及其在快速人脸识别中的应用[J].计算机技术与发展,2010,(07):235.
 ZHANG Jin-juan,SHI Jun,YU Jia-li,et al.Research on SpikeNet and Its Application in Quick Face Recognition[J].,2010,(10):235.
[4]方鹤鹤 冯宏伟 马煜.基于形态滤波和分水岭变换的边缘检测方法[J].计算机技术与发展,2006,(01):49.
 FANG He-he,FENG Hong-wei,MA Yu.Edge Detection Method Based on Morphology Filter and Watershed[J].,2006,(10):49.
[5]李雪晨 汪仁煌 艾星芳.改进的弯曲度算法在阶梯修剪检测中的应用[J].计算机技术与发展,2012,(03):166.
 LI Xue-chen,WANG Ren-huang,AI Xing-fang.Use of Improved Tortuosity Algorithm in Step Form Disfigurement Test[J].,2012,(10):166.
[6]赵立双 冯莹 曹毓.单目视觉定位中SURF算法参数的优化[J].计算机技术与发展,2012,(06):6.
 ZHAO Li-shuang,FENG Ying,CAO Yu.Optimization of SURF Parameters in Monocular Visual Odometry[J].,2012,(10):6.
[7]徐自越 李战明 李二超.OpenCV在焊缝实时检测与处理系统中的应用[J].计算机技术与发展,2012,(08):170.
 XU Zi-yue,LI Zhan-ming,LI Er-chao.Application of OpenCV on Real-time Detection and Processing System of Seam[J].,2012,(10):170.
[8]杨杰,卢盛林,赵晓芳.机器视觉在钢化玻璃缺陷检测中的应用研究[J].计算机技术与发展,2013,(03):211.
 YANG Jie,LU Sheng-lin,ZHAO Xiao-fang.Application and Research of Machine Vision in Tempered Glass Defect Inspection[J].,2013,(10):211.
[9]陈鹏宇[],孙文奇[],赵忠龙[]. 基于机器视觉的印刷质量检测研究[J].计算机技术与发展,2014,24(07):103.
 CHEN Peng-yu[],SUN Wen-qi[],ZHAO Zhong-long[]. rinting Quality Detection Based on Machine Vision[J].,2014,24(10):103.
[10]洪磊[],嵇保健[],洪峰[]. 一种基于亚像素角点的 SIFT 立体匹配算法研究[J].计算机技术与发展,2016,26(01):48.
 HONG Lei[],JI Bao-jian[],HONG Feng[]. Research on a SIFT Stereo Matching Algorithm Based on Sub-pixel Corners[J].,2016,26(10):48.

更新日期/Last Update: 2020-10-10