[1]张 艺,匡 毅,王 梅,等.基于 OpenCV 的人体轮廓检测算法[J].计算机技术与发展,2020,30(08):81-85.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 013]
 ZHANG Yi,KUANG Yi,WANG Mei,et al.Human Contour Detection Algorithm Based on OpenCV[J].,2020,30(08):81-85.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 013]
点击复制

基于 OpenCV 的人体轮廓检测算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年08期
页码:
81-85
栏目:
智能、算法、系统工程
出版日期:
2020-08-10

文章信息/Info

Title:
Human Contour Detection Algorithm Based on OpenCV
文章编号:
1673-629X(2020)08-0081-05
作者:
张 艺匡 毅王 梅黄志远胡 松
成都理工大学 信息科学与技术学院,四川 成都 610059
Author(s):
ZHANG YiKUANG YiWANG MeiHUANG Zhi-yuanHU Song
School of Information Science and Technology,Chengdu University of Technology,Chengdu 610059,China
关键词:
OpenCV图像处理高斯滤波Sobel 检测算子轮廓检测
Keywords:
OpenCVimage processingGaussian filteringSobel edge detection operatorcontour detection
分类号:
P301. 6
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 08. 013
摘要:
人体轮廓检测一直都是图像处理领域研究的热点问题,在监控系统、军事扫描搜寻、无人驾驶以及机场的安全等方面都有着息息相关的应用。 针对目前在地下停车场或者机场等不方便进行人工监督的地方,为了保障行人安全,提出了一种基于 OpenCV 的人体轮廓检测研究方法。 对所标记和存储的人体图像进行去噪和图像形态学处理,通过 Canny 边缘检测和膨胀及腐蚀处理,以阈值化等方法得到图像轮廓。 同时对于人体轮廓的边缘检测,选用最优的 Sobel 算子作为边缘检测算子;然后从图像中检索并绘制出人体轮廓,把人体区域提取出来并保存。 通过实验证明,提出算法的平均人体轮廓检测正确率为 91.7% ,除了准确性,该方法的运算时间与中值滤波相比,缩短了 80%。 因此,该方法既能够保证人体检测的准确性,又能够实现快速检测,在机场等人流量大,检测不便的应用场合具有较强的适用性。
Abstract:
Human contour detection has always been a hot issue in the field of image processing,and it has closely related applications in monitoring systems, military scanning search,unmanned driving and airport security. In order to ensure the safety of pedestrians in places where it is not convenient to carry out manual supervision in underground parking lots or airports,we propose a human contour detection method based on OpenCV. The labeled and stored human images are denoised and morphologically processed. Through Canny edge detection and expansion and erosion processing, image contours are obtained by thresholding methods. At the same time,the optimal Sobel operator is selected as the edge detection operator for human body contour,and then the human body contour is retrieved from the image and drawn, and the human body region is extracted and saved. Experiment shows that the average human contour detection accuracy of the algorithm is 91. 7% . In addition to accuracy, its calcu-lation time is shortened by 80% compared with the median filtering. Therefore,the proposed method can not only ensure the accuracy of human body detection, but also achieve rapid detection,which has strong applicability in airports and other applications where the human flow is large and the detection is inconvenient.

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(08):125.
[2]张艳丽 保文星.粒子群优化算法在图像边缘检测中的研究应用[J].计算机技术与发展,2009,(05):26.
 ZHANG Yan-li,BAO Wen-xing.Research and Application of Image Edge Detection Based on PSO Algorithm[J].,2009,(08):26.
[3]詹金兰 李翠华.模拟实验系统的可视化研究[J].计算机技术与发展,2009,(05):228.
 ZHAN Jin-lan,LI Cui-hua.Visualization Research on Simulation Experiment System[J].,2009,(08):228.
[4]于勇 张晖 林茂松.基于双目立体视觉三维重建系统的研究与设计[J].计算机技术与发展,2009,(06):127.
 YU Yong,ZHANG Hui,LIN Mao-song.Research and Design of the 3D Reconstruction System Based on Binocular Stereo Vision[J].,2009,(08):127.
[5]张家栋 张强 霍凯.图像处理在轴承荧光磁粉探伤中的应用研究[J].计算机技术与发展,2009,(08):216.
 ZHANG Jia-dong,ZHANG Qiang,HUO Kai.Study on Application of Image Processing in Bearing Fluorescent Magnetic Detection[J].,2009,(08):216.
[6]王文豪 张亚红 朱全银 单劲松.QR Code二维条形码的图像识别[J].计算机技术与发展,2009,(10):123.
 WANG Wen-hao,ZHANG Ya-hong,ZHU Quan-yin,et al.Image Recognition in 2 - D Bar Code Based on QR Code[J].,2009,(08):123.
[7]李孟歆 吴成东.粗糙集理论在图像处理中的应用[J].计算机技术与发展,2009,(03):208.
 LI Meng-xin,WU Cheng-dong.Rough Set Theory and Its Applications in Image Processing[J].,2009,(08):208.
[8]武彬.一种离焦模糊图像的复原方法[J].计算机技术与发展,2008,(01):74.
 WU Bin.A Method of Defocus Blurred Image Restoration[J].,2008,(08):74.
[9]蒋恩松 肖辉军 孙刘杰 熊清廉.基于机器视觉的套印误差自动检测系统设计[J].计算机技术与发展,2008,(07):173.
 JIANG En-song,XIAO Hui-jun,SUN Liu-jie,et al.Design of Automatic Detecting Printing Registration Deviation System Based on Machine Vision[J].,2008,(08):173.
[10]汪继文 林胜华 沈玉峰 邱剑锋.一种基于各向异性扩散的图像处理方法[J].计算机技术与发展,2008,(08):98.
 WANG Ji-wen,LIN Sheng-hua,SHEN Yu-feng,et al.An Approach for Image Restoration Based on Anisotropic Diffusion[J].,2008,(08):98.
[11]徐自越 李战明 李二超.OpenCV在焊缝实时检测与处理系统中的应用[J].计算机技术与发展,2012,(08):170.
 XU Zi-yue,LI Zhan-ming,LI Er-chao.Application of OpenCV on Real-time Detection and Processing System of Seam[J].,2012,(08):170.
[12]夏雪婷,胡正飞,潘玲云. 基于OpenCV人脸检测的室内照明自动控制系统[J].计算机技术与发展,2017,27(04):184.
 XIA Xue-ting,HU Zheng-fei,PAN Ling-yun. Indoor Automatic Lighting Control System with OpenCV Face Detection[J].,2017,27(08):184.
[13]冯小建,马明栋,王得玉.基于改进的 Adaboost 算法的人脸检测系统[J].计算机技术与发展,2019,29(03):89.[doi:10.3969/ j. issn.1673-629X.2019.03.019]
 FENG Xiao-jian,MA Ming-dong,WANG De-yu.Face Detection System Based on Improved Adaboost Algorithm[J].,2019,29(08):89.[doi:10.3969/ j. issn.1673-629X.2019.03.019]

更新日期/Last Update: 2020-08-10