[1]姜红玉,汪 朋,封 雷.基于流式计算的实时用户画像系统研究[J].计算机技术与发展,2020,30(07):186-193.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 039]
 JIANG Hong-yu,WANG Peng,FENG Lei.Research on Real-time User Profile System Based on Stream Computing[J].,2020,30(07):186-193.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 039]
点击复制

基于流式计算的实时用户画像系统研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年07期
页码:
186-193
栏目:
应用开发研究
出版日期:
2020-07-10

文章信息/Info

Title:
Research on Real-time User Profile System Based on Stream Computing
文章编号:
1673-629X(2020)07-0186-08
作者:
姜红玉汪 朋封 雷
中国电子科技集团公司第十五研究所,北京 100083
Author(s):
JIANG Hong-yuWANG PengFENG Lei
The 15th Research Institute of China Electronics Technology Group Corporation,Beijing 100083,China
关键词:
用户画像流式计算实时Flink大数据标签
Keywords:
user profilestream computingreal timeFlinkbig datalabel
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 07. 039
摘要:
大数据环境下,基于海量数据,针对用户画像的精准度和实时性问题,对实时用户画像系统进行了研究工作,提出了一种采用流式计算思想的实时用户画像系统架构。 从整体角度梳理分析了用户画像的体系结构,利用消息队列中间件Kafka 实时采集不同维度的用户数据,利用大数据分析和机器学习技术构建了相对精准立体的用户画像数据标签体系及用户画像模型,应用 Flink 框架和数据挖掘技术对多源流式数据进行实时计算处理,深度分析用户,挖掘用户的特征及需求,进而刻画出精准的用户画像,提供精准的个性化信息服务。 该架构能准确对用户进行全方位、高精度的画像构建,结果具有较高的实时性和精确度,从而能达到快速且准确地了解用户需求、利用数据服务用户和业务发展的目的。
Abstract:
Under the background of the big data,we carry out the research on real-time user profile of massive data and propose a real-time user profile system architecture based on stream computing for the problem of accuracy and real-time. Analyze the architecture of user profile from holistic perspective. With message queue middleware Kafka, the user data from different dimensions in real time is collected,and relatively accurate stereoscopic user profile data labeling system and user profile model are constructed through big data analysis and machine learning techniques. Flink framework and data mining technology are used to process real-time multi-source streaming data for in-depth analysis of users,mining user characteristics and needs,and then depicting accurate user portrait,so as to provide accurate personalized information services. This architecture can accurately construct the user’s image with high accuracy in all directions. The results have high real-time performance and accuracy, which can realize the purpose of quickly and accurately understanding user needs,using data to serve users and business development.

相似文献/References:

[1]吴明礼,杨双亮. 基于移动特征数据的内容推送技术研究与应用[J].计算机技术与发展,2017,27(09):155.
 WU Ming-li,YANG Shuang-liang. Research and Application on Content Push Technology with Mobile Feature Data[J].,2017,27(07):155.
[2]罗利能,吴秋蓉,石莹禹,等.智能化数据挖掘学习平台的设计与实现[J].计算机技术与发展,2021,31(05):168.[doi:10. 3969 / j. issn. 1673-629X. 2021. 05. 029]
 ,,et al.DesignandImplementationofIntelligentDataMiningLearningPlatform[J].,2021,31(07):168.[doi:10. 3969 / j. issn. 1673-629X. 2021. 05. 029]
[3]谢君臣,李 涛*,黄 甫,等.面向药店会员用户画像的构建及应用研究[J].计算机技术与发展,2022,32(03):145.[doi:10. 3969 / j. issn. 1673-629X. 2022. 03. 024]
 XIE Jun-chen,LI Tao*,HUANG Fu,et al.Research on Construction and Application of User Portrait for Pharmacy Members[J].,2022,32(07):145.[doi:10. 3969 / j. issn. 1673-629X. 2022. 03. 024]
[4]苗 宇,金醒男,杜永萍.基于 Multi-Aspect 的融合网络用户画像生成方法[J].计算机技术与发展,2022,32(08):20.[doi:10. 3969 / j. issn. 1673-629X. 2022. 08. 004]
 MIAO Yu,JIN Xing-nan,DU Yong-ping.A User Profile Generation Method Based on Multi-Aspect Converged Network[J].,2022,32(07):20.[doi:10. 3969 / j. issn. 1673-629X. 2022. 08. 004]
[5]师奥翔,张 洁.基于改进 RFM 模型的电商用户价值分类的研究[J].计算机技术与发展,2022,32(12):123.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 019]
 SHI Ao-xiang,ZHANG Jie.Research on E-commerce User Value Classification Based on Improved RFM Model[J].,2022,32(07):123.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 019]

更新日期/Last Update: 2020-07-10