[1]申静波,李井辉,孙丽娜.注意力机制在评论文本情感分析中的应用研究[J].计算机技术与发展,2020,30(07):169-173.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 036]
 SHEN Jing-bo,LI Jing-hui,SUN Li-na.Research on Application of Attention Mechanism in Comment Text Emotional Analysis[J].,2020,30(07):169-173.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 036]
点击复制

注意力机制在评论文本情感分析中的应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年07期
页码:
169-173
栏目:
应用开发研究
出版日期:
2020-07-10

文章信息/Info

Title:
Research on Application of Attention Mechanism in Comment Text Emotional Analysis
文章编号:
1673-629X(2020)07-0169-05
作者:
申静波李井辉孙丽娜
东北石油大学 计算机与信息技术学院,黑龙江 大庆 163318
Author(s):
SHEN Jing-boLI Jing-huiSUN Li-na
School of Computer and Information Technology,North East Petroleum University,Daqing 163318,China
关键词:
评论文本情感分析长短期记忆网络Seq2Seq 模型注意力机制
Keywords:
comment textsentiment analysisLSTMSeq2Seq modelattention mechanism
分类号:
TP391. 41
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 07. 036
摘要:
长短期记忆神经网络(long short term memory,LSTM) 在文本情感分类的准确率方面拥有优秀的表现,能够解决基于长文本序列的模型训练过程中的梯度消失和梯度爆炸等问题。 针对传统的 LSTM 分类模型不能突出体现输出的某个词语对分类类别的贡献程度和重要性的现象,在循环神经网络(RNN) 变体长短期记忆人工神经网络( LSTM) 隐藏层和输出层之间引入注意力机制,其主要目的是在模型做最后的极性分类预测时,在重要的句子成分加上权重,加大了对最后分类的预测概率的影响因素。实验证明 LSTM 与注意力机制的融合可突出模型产生动态变化的背景向量以表现出不同输入词语对于输出词语分类的重要性,从而有效提高了分类速率和准确率。
Abstract:
Long short term memory (LSTM) has an excellent performance in the accuracy of text emotional classification,and can solve the problems of gradient disappearance and gradient explosion in the process of model training based on long text sequences. In view of the pheno-menon that the traditional LSTM classification model cannot incarnate the output word’s contribution to the classification category degree and the importance, we introduce the attention mechanism between hidden layer and output layer in LSTM variated from circulatory neural network (RNN) ,aiming to add weights to the important sentence components when the model makes the final prediction of polarity classification and increasing the influence factors on the prediction probability of the final classification. Experiment shows that the integration of LSTM and attention mechanism can highlight the background vector of dynamic changes in the model to show the importance of different input words to the output words classification,thus effectively improving the classification rate and accuracy.

相似文献/References:

[1]李妍坊,许歆艺,刘功申. 面向情感倾向性识别的特征分析研究[J].计算机技术与发展,2014,24(09):33.
 LI Yan-fang,XU Xin-yi,LIU Gong-shen. Research on Feature Analysis Oriented Text Sentiment Identification[J].,2014,24(07):33.
[2]苏小英[][],孟环建[]. 基于神经网络的微博情感分析[J].计算机技术与发展,2015,25(12):161.
 SU Xiao-ying[][],MENG Huan-jian[]. Sentiment Analysis of Micro-blog Based on Neural Networks[J].,2015,25(07):161.
[3]陈耀东,彭蝶飞.一种面向旅游评论的情感特征识别方法[J].计算机技术与发展,2018,28(11):107.[doi:10.3969/ j. issn.1673-629X.2018.11.24]
 CHEN Yao-dong,PENG Die-fei.A Recognition Method of Sentiment Features for Tour Reviews[J].,2018,28(07):107.[doi:10.3969/ j. issn.1673-629X.2018.11.24]
[4]杨立月,王移芝.微博情感分析的情感词典构造及分析方法研究[J].计算机技术与发展,2019,29(02):13.[doi:10.3969/j.issn.1673-629X.2019.02.003]
 YANG Liyue,WANG Yizhi.Research on Construction and Analysis of Emotion Dictionary in Emotion Analysis of Micro-blog[J].,2019,29(07):13.[doi:10.3969/j.issn.1673-629X.2019.02.003]
[5]唐 莉,刘 臣.基于 CRF 和 HITS 算法的特征情感对提取[J].计算机技术与发展,2019,29(07):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 014]
 TANG Li,LIU Chen.Extraction of Feature and Sentiment Word Pair Based on Conditional Random Fields and HITS Algorithm[J].,2019,29(07):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 014]
[6]王连喜.基于“属性-情感词”汽车本体的文本情感分析[J].计算机技术与发展,2020,30(08):193.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 034]
 WANG Lian-xi.Sentiment Analysis Method Based on Attribute-sentiment Ontology in Automobile Domain[J].,2020,30(07):193.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 034]
[7]邱全磊,崔宗敏,喻 静.基于表情和语气的情感词典用于弹幕情感分析[J].计算机技术与发展,2020,30(08):178.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 031]
 QIU Quan-lei,CUI Zong-min,YU Jing.Emotional Dictionary Based on Emoticons and Modal for Barrage Sentiment Analysis[J].,2020,30(07):178.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 031]
[8]黄剑波,陈方灵,丁友东,等.基于情感分析的个性化电影推荐[J].计算机技术与发展,2020,30(09):132.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 024]
 HUANG Jian-bo,CHEN Fang-ling,DING You-dong,et al.Personalized Movie Recommendation Based on Sentiment Analysis[J].,2020,30(07):132.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 024]
[9]刘昌澍,李 响,詹瑾瑜,等.基于TextCNN和LightGBM 的导游违规行为检测[J].计算机技术与发展,2021,31(05):143.[doi:10. 3969 / j. issn. 1673-629X. 2021. 05. 025]
 ,,et al.IllegalTourGuideBehaviorDetectionBasedonTextCNNandLightGBM[J].,2021,31(07):143.[doi:10. 3969 / j. issn. 1673-629X. 2021. 05. 025]
[10]王 艳,彭 治,杜永萍.融合评分矩阵和评论文本的深度学习推荐模型[J].计算机技术与发展,2021,31(08):13.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 003]
 WANG Yan,PENG Zhi,DU Yong-ping.A Deep Learning Recommendation Model Combining Rating Matrix and Review Text[J].,2021,31(07):13.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 003]

更新日期/Last Update: 2020-07-10