[1]郭言信,朱明旱,张明月,等.基于视频的夜间车辆检测与跟踪[J].计算机技术与发展,2020,30(05):206-210.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 039]
 GUO Yan-xin,ZHU Ming-han,ZHANG Ming-yue,et al.Video-based Nighttime Vehicle Detection and Tracking[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(05):206-210.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 039]
点击复制

基于视频的夜间车辆检测与跟踪()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年05期
页码:
206-210
栏目:
应用开发研究
出版日期:
2020-05-10

文章信息/Info

Title:
Video-based Nighttime Vehicle Detection and Tracking
文章编号:
1673-629X(2020)05-0206-05
作者:
郭言信朱明旱张明月张栩华周楠皓
湖南文理学院 计算机与电气工程学院,湖南 常德 415000
Author(s):
GUO Yan-xinZHU Ming-hanZHANG Ming-yueZHANG Xu-huaZHOU Nan-hao
School of Computer and Electrical Engineering,Hunan University of Arts and Science,Changde 415000,China
关键词:
智能交通夜间车辆检测车灯配对矩形框连通区域
Keywords:
intelligent transportationnight vehicle detectionheadlight pairingrectangular boxconnected regions
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 05. 039
摘要:
在道路交通管理中基于视频的车辆检测技术发挥了越来越重要的作用。针对夜间交通视频图像中由于照明度低和光线反射干扰导致运动目标提取困难等问题,提出一种建立矩形框来标志车辆的夜间车辆检测与跟踪的方法。 通过对图像进行预处理,提取可能为车灯的亮点,建立连通区域。 利用两车灯之间的水平位置,两车灯的面积应该是相近或几乎相等以及两者之间的距离应该小于设定的阈值来进行车灯配对。 车灯配对成功之后,适当放大配对车灯的连线长度,得到车头宽度。 进而根据车头长宽比关系得到车头区域,再通过规则集来定义多种情况下矩形框保存车辆信息的基本原则。 车辆的统计跟踪通过基于邻域的方法来实现。 经过实验表明,该方法能很好地适用于夜间车辆的检测,并且能满足夜间检测的要求,具备一定的稳定性和准确率。
Abstract:
Video- based vehicle detection technology plays an increasingly important role in road traffic management. Aiming at the difficulty of moving target extraction in video images of night traffic due to low illumination and light reflection interference,a method of establishing rectangular frame to mark the vehicle flow detection and tracking at night is proposed. By preprocessing the image,the bright spots of the possible headlights can be extracted and the connected areas can be established. Using the horizontal position between the two lights,the area of the two lights should be close or almost equal and the distance between the two lights should be less than the set threshold value to carry out the lamp pairing. After the pairing of headlights is successful, the connecting length of paired headlights should be appropriately enlarged to obtain the width of the head. Then,according to the relation of the aspect ratio of the front end,the front end area is obtained. The statistical tracking of vehicles is realized by neighborhood based method. Experiment shows that this method is suitable for night vehicle detection,and can meet the requirements of night detection,with a certain stability and accuracy.

相似文献/References:

[1]刘萌萌.基于无标度摄像机的车流跟踪与速度估计算法[J].计算机技术与发展,2008,(06):111.
 LIU Meng-meng.Algorithm on Vehicle Tracking and Speed Estimating Based on Non- Calibrated Camera[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2008,(05):111.
[2]李庆庆 张燕平.基于模糊边缘检测算法的车牌定位[J].计算机技术与发展,2006,(12):7.
 LI Qing-qing,ZHANG Yan-ping.License Plate Location Based on Fuzzy Edge Detection[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2006,(05):7.
[3]魏永超.基于SOPC的视频车辆检测技术研究[J].计算机技术与发展,2011,(05):227.
 WEI Yong-chao.Research on Video Vehicle Detecting Based on SOPC[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2011,(05):227.
[4]任晓莉.基于WSN的路口交通信号控制设计[J].计算机技术与发展,2011,(10):193.
 REN Xiao-li.Intelligent Traffic Control Design Based on Wireless Sensors Network[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2011,(05):193.
[5]刘亚非 辛飞飞.基于综合特征的车辆检测识别系统[J].计算机技术与发展,2012,(09):18.
 LIU Ya-fei,XIN Fei-fei.Vehicle Detection and Recognition System Based on Comprehensive Features[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2012,(05):18.
[6]蒋新华[][],胡惠淳[],张锦[],等. 云计算系统研究及其在交通运输中的应用[J].计算机技术与发展,2014,24(11):217.
 JIANG Xin-hua[][],HU Hui-chun[],ZHANG Jin[],et al. Research on Cloud Computing System and Its Application in Traffic Transportation[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2014,24(05):217.
[7]张永灿[][],黄海平[] [],曹雍[] 王汝传[][][]. 基于无线传感网的智能交通灯自适应算法[J].计算机技术与发展,2015,25(02):199.
 ZHANG Yong-can[] [],HUANG Hai-ping[] [],CAO Yong[],et al. Adaptive Traffic Light Control Algorithm Based on Wireless Sensor Networks[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2015,25(05):199.
[8]曹志威[],邵旭东[],樊志杰[][],等. 基于视频安全接入的道路紧急事件响应机制[J].计算机技术与发展,2015,25(07):166.
 CAO Zhi-wei[],SHAO Xu-dong[],FAN Zhi-jie[][],et al. Response Mechanism of Road Emergency Based on Video Security Access[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2015,25(05):166.
[9]王潜,张艳彬.基于双目视觉的货车尺寸测量[J].计算机技术与发展,2018,28(06):161.[doi:10.3969/ j. issn.1673-629X.2018.06.036]
 WANG Qian,ZHANG Yan-bin.Truck Dimensions Measurement Based on Binocular Vision[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(05):161.[doi:10.3969/ j. issn.1673-629X.2018.06.036]
[10]张志杰[],杨硕[]. 主-从PTZ视频检测软件模块化设计及架构[J].计算机技术与发展,2016,26(09):114.
 ZHANG Zhi-jie[],YANG Shuo[]. Modular Design and Architecture of Master-slave PTZ Video Detection Software[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2016,26(05):114.

更新日期/Last Update: 2020-05-10