[1]邱 东,翁 蒙,杨宏韬.基于改进概率霍夫变换的车道线快速检测方法[J].计算机技术与发展,2020,30(05):43-48.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 009]
 QIU Dong,WENG Meng,YANG Hong-tao.A Fast Lane Line Detection Method Based on Improved Probability Hough Transform[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(05):43-48.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 009]
点击复制

基于改进概率霍夫变换的车道线快速检测方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年05期
页码:
43-48
栏目:
智能、算法、系统工程
出版日期:
2020-05-10

文章信息/Info

Title:
A Fast Lane Line Detection Method Based on Improved Probability Hough Transform
文章编号:
1673-629X(2020)05-0043-06
作者:
邱 东翁 蒙杨宏韬
长春工业大学 电气与电子工程学院,吉林 长春 130012
Author(s):
QIU DongWENG MengYANG Hong-tao
School of Electrical and Electronic Engineering,Changchun University of Technology,Changchun 130012,China
关键词:
车道线检测大津二值化法约束条件累计概率霍夫变换核回归模型
Keywords:
lane line detectionOtsu’s threshold algorithmconstraintsprogressive probability Hough transformkernel regression model
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 05. 009
摘要:
车道线是行车安全的重要参考。 为提高无人驾驶行车过程中车道线检测的准确性和实时性,提出一种基于改进概率霍夫变换的车道线快速检测方法。 首先对获取的图像进行感兴趣区域提取,根据车道线颜色的特殊性,合理选取三色通道的比值对图片进行灰度化,为增强阈值处理的鲁棒性,采用大津二值化法对灰度图像进行二值化,由于 Canny 算子具有良好的定位边缘的能力,本次边缘提取算子选取为 Canny。 接着分别从车道线长度、角度、车体和车道宽度 4 个方面提出 4 点约束条件对该算法加以改进,剔除干扰线和伪车道线,最后通过线性回归法拟合出正确车道线。 实验结果表明,该算法在快速检测车道线的同时保证了检测的准确率,并将实验结果与其他算法进行比较,证明了该算法的实时性和准确性优于其他算法。
Abstract:
Lane line is an important reference for traffic safety. To improve the accuracy and timeliness of lane line detection in driverless driving,a fast lane line detection method based on improved probabilistic Hough transform is presented. Firstly,the region of interest is extracted from  the acquired image,according to the particularity of lane line color,the ratio of three color channels is selected reasonably to conduct gray-scale of the picture. In order to enhance the robustness of threshold processing,Otsu’s threshold algorithm is used to binarize the gray scale image. The Canny operator, which has a great ability to locate the edge,is chosen in this study. Then, the algorithm is improved by putting forward four-point constraint conditions from four aspects of lane line length,angle,vehicle body and lane width to eliminate interference lines and pseudo-lane lines. Finally,the correct lane line is fitted by linear regression method. The experiment shows that the proposed algorithm can detect lane quickly and ensure the accuracy of lane detection. Comparing the experimental results with other algorithms,it is proved that the real-time and accuracy of the proposed algorithm is better than other algorithms.

相似文献/References:

[1]朱鸿宇,杨 帆,高晓倩,等.基于级联霍夫变换的车道线快速检测算法[J].计算机技术与发展,2021,31(01):88.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 016]
 ZHU Hong-yu,YANG Fan,GAO Xiao-qian,et al.A Fast Lane Detection Algorithm Based on Cascade Hough Transform[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2021,31(05):88.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 016]
[2]李 玉,王桂丽,张道秧,等.一种交通路口车道线检测与车道分割方法[J].计算机技术与发展,2022,32(S2):72.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 013]
 LI Yu,WANG Gui-li,ZHANG Dao-yang,et al.A Lane Line Detection and Segmentation Method for Traffic Intersections[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2022,32(05):72.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 013]

更新日期/Last Update: 2020-05-10