[1]徐明远,崔 华,张立恒.基于改进 CNN 的公交车内拥挤状态识别[J].计算机技术与发展,2020,30(05):32-37.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 007]
 XU Ming-yuan,CUI Hua,ZHANG Li-heng.Recognition of Crowded State in Bus Based on Improved Convolution Neural Network[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(05):32-37.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 007]
点击复制

基于改进 CNN 的公交车内拥挤状态识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年05期
页码:
32-37
栏目:
智能、算法、系统工程
出版日期:
2020-05-10

文章信息/Info

Title:
Recognition of Crowded State in Bus Based on Improved Convolution Neural Network
文章编号:
1673-629X(2020)05-0032-06
作者:
徐明远崔 华张立恒
长安大学 信息工程学院,陕西 西安 710000
Author(s):
XU Ming-yuanCUI HuaZHANG Li-heng
School of Informational Engineering,Chang’an University,Xi’an 710000,China
关键词:
图像识别卷积神经网络模型改进VGG-16公交车拥挤状态
Keywords:
image recognitionconvolution neural networkmodel improvementVGG-16buscrowded state
分类号:
TP391. 41
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 05. 007
摘要:
针对传统的视频图像处理方法对公交车内乘客拥挤状态的检测受运动阴影、动态背景及场景光照变化等因素的影响问题,提出了一种基于改进卷积神经网络 VGG-16 的公交车内拥挤状态识别方法。 该方法在 VGG-16 的模型基础上,优化全连接层层数,使用迁移学习共享 VGG-16 预训练模型的各层权值参数进行训练。相对于文中的传统图像处理方法、AlexNet 模型、GooleNet 模型以及标准 VGG-16 模型,改进的 VGG-16 模型对公交车拥挤状态的识别准确率最高,识别精度能够达到 96.1%。模型的损失值比标准 VGG-16 模型收敛得更快,模型表现得更加稳定。 实验证明:改进后的VGG-16 模型能够更好地提取公交内拥挤状态的特征,解决公交车内拥挤状态的识别问题。
Abstract:
Aiming at the problem that the traditional video image processing method is used to detect the crowded state of passengers in the bus,such as motion shadow,dynamic background and scene illumination changes,a crowded bus state recognition method based on improved convolution neural network VGG-16 is proposed. Based on the VGG-16 model,this method optimizes the number of all-connected layers and uses the migration learning to share the weight parameters of each layer of the VGG16 pre-training model for training. Compared with the traditional image processing methods,AlexNet model,GooleNet model and standard VGG-16 model,the improved VGG-16 model has the highest recognition accuracy of bus congestion status,and the recognition accuracy can reach 96.1% . The loss value of the model converges faster than that of the standard VGG-16 model,and the model is more stable. The experiment proves that the improved VGG-16 model can better extract the characteristics of the crowded state in the bus and solve the problem of the congestion status in the bus.

相似文献/References:

[1]王明平 宋丽梅.基于计算机视觉的车架号采集系统[J].计算机技术与发展,2008,(04):239.
 WANG Ming-ping,SONG Li-mei.Vehicle Identify Number Acquisition System Based on Machine-Vision[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2008,(05):239.
[2]徐仕玲 赵敏 徐建波.野外早期火灾图像识别方法研究[J].计算机技术与发展,2008,(06):214.
 XU Shi-ling,ZHAO Min,XU Jian-bo.Research for Early Fire Image Recognition Technology in Outdoors[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2008,(05):214.
[3]张婷 吴元君 黄俊 吴建国.选票选举系统中选票图像的预处理方法研究[J].计算机技术与发展,2007,(04):225.
 ZHANG Ting,WU Yuan-jun,HUANG Jun,et al.Research of Image Pre- Processing in Vote Processing System[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2007,(05):225.
[4]吴忠 朱国龙 黄葛峰 吴建国.基于图像识别技术的手写数字识别方法[J].计算机技术与发展,2011,(12):48.
 WU Zhong,ZHU Guo-long,HUANG Ge-feng,et al.Handwritten Digit Recognition Based on Image Recognition System[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2011,(05):48.
[5]汪晨 张涛 林为民 邓松 时坚 李伟伟.图像识别综述及在电力信息安全中的应用研究[J].计算机技术与发展,2012,(04):161.
 WANG Chen,ZHANG Tao,LIN Wei-min,et al.Image Recognition Review and Application Research in Electric Power Information Security[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2012,(05):161.
[6]王珂雅 邱力军.一种新的脑部CT图像异常检测算法[J].计算机技术与发展,2012,(05):185.
 WANG Ke-ya,QIU Li-jun.A New Anomaly Detection Algorithm for Brain CT Image[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2012,(05):185.
[7]周诚诚 张代远[].利用图像识别技术过滤海量可疑钓鱼网站[J].计算机技术与发展,2012,(11):246.
 ZHOU Cheng-cheng,ZHANG Dai-yuan.Using Image Recognition Technology to Filter Mass Suspicious Phishing Sites[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2012,(05):246.
[8]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(05):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[9]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2016,26(05):31.
[10]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(05):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[11]王山海,刘谦,马鑫鑫.基于图像识别的人工影响天气业务的研究[J].计算机技术与发展,2019,29(05):172.[doi:10. 3969 / j. issn. 1673-629X. 2019. 05. 036]
 WANG Shan-hai,LIU Qian,MA Xin-xin.Research on Weather Modification Based on Image Recognition[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2019,29(05):172.[doi:10. 3969 / j. issn. 1673-629X. 2019. 05. 036]
[12]孙娇娇,龚 安,史海涛.基于卷积神经网络的低剂量 CT 图像肺结节检测[J].计算机技术与发展,2019,29(11):173.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 035]
 SUN Jiao-jiao,GONG An,SHI Hai-tao.Detection of Low-dose CT Pulmonary Nodule Based on Convolutional Neural Network[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2019,29(05):173.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 035]
[13]张素智,吴玉红,常 俊.基于改进 AlexNet 卷积神经网络的轮胎图像识别[J].计算机技术与发展,2021,31(07):182.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 030]
 ZHANG Su-zhi,WU Yu-hong,CHANG Jun.Tire Damage Image Recognition Based on Improved AlexNetConvolutional Neural Network[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2021,31(05):182.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 030]
[14]俞圳韬,刘万里,杨晓辉,等.基于贝叶斯优化和迁移学习的 CNN 算法研究[J].计算机技术与发展,2022,32(S2):68.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 012]
 YU Zhen-tao,LIU Wan-li,YANG Xiao-hui,et al.Research on CNN Algorithm Based on BayesianOptimization and Transfer Learning[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2022,32(05):68.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 012]

更新日期/Last Update: 2020-05-10