[1]刘家祝,郭 强,吴碧伟,等.基于子图相交的社交账号与知识图谱实体对齐[J].计算机技术与发展,2020,30(05):10-15.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 003]
 LIU Jia-zhu,GUO Qiang,WU Bi-wei,et al.Subgraph Intersection Based Alignment between Social Media Account and Knowledge Graph Entity[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(05):10-15.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 003]
点击复制

基于子图相交的社交账号与知识图谱实体对齐()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年05期
页码:
10-15
栏目:
智能、算法、系统工程
出版日期:
2020-05-10

文章信息/Info

Title:
Subgraph Intersection Based Alignment between Social Media Account and Knowledge Graph Entity
文章编号:
1673-629X(2020)05-0010-06
作者:
刘家祝郭 强吴碧伟曾明勇
江南计算技术研究所,江苏 无锡 214085
Author(s):
LIU Jia-zhuGUO QiangWU Bi-weiZENG Ming-yong
Jiangnan Institute of Computing Technology,Wuxi 214085,China
关键词:
社交媒体知识图谱子图社交关系对齐
Keywords:
social mediaknowledge graphsubgraphsocial relationshipalignment
分类号:
TP391. 1
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 05. 003
摘要:
社交媒体与知识图谱的数据各具特点,相互之间的数据互通具有较强的现实意义,而社交账号与知识图谱实体的对齐是数据互通的前提。 针对社交媒体与知识图谱的特点,提出了一种基于子图相交的对齐方法,旨在给定社交账号的情况下,根据社交账号的相关信息在知识图谱中找到正确的对应条目。 该方法在候选实体生成阶段对比实验了不同的生成策略。 在目标实体选择阶段提出一种基于子图相交的算法,利用社交账号的社交关系在知识图谱中映射成子图。 子图相交算法通过考察子图中候选实体周围顶点的“稠密”程度,确定社交账号所对应的目标实体。 由于该领域尚无公开可用的测试数据集,构造了一个基于 Twitter 与 Wikidata 的对齐数据集,使用该数据集对该方法进行评估,对比测试了标题匹配算法和 AGDISTIS 算法,子图相交算法能够达到更好的效果。
Abstract:
The data of social media and knowledge graph have their own characteristics,and the data exchange between them has strong practical significance. The alignment of social accounts and knowledge graph entities is the premise of data exchange. Focused on the characteristics of social media and knowledge graph,an alignment method based on subgraph intersection is proposed to find the correct corresponding entries in knowledge graph under given social media accounts. In the phase of candidate entity stage,different generation strategies are compared and experimented. A subgraph intersection algorithm in the target entity selection stage is presented,which creates subgraphs by using the social relations of social media accounts within knowledge graph. By investigating the “density”of vertices around candidate entities in the subgraph,the target entities corresponding to social media accounts are selected. There is no publicly available data set for testing and evaluation in this field,so an aligned data set based on Twitter and Wikidata is constructed to evaluate the proposed method,and the algorithm based on title comparison and AGDISTIS algorithm are tested. Subgraph intersection method can achieve better results.

相似文献/References:

[1]孙艳,田丽梅. 基于多维尺度分析的舆情研究主题词知识图谱[J].计算机技术与发展,2016,26(04):187.
 SUN Yan,TIAN Li-mei. Mapping Knowledge Domain on Subject Headings of Public Sentiment Research Based on Multi-dimensional Scaling[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2016,26(05):187.
[2]王冰玉,吴振宇,沈苏彬,等.社交媒体事件检测研究综述[J].计算机技术与发展,2018,28(09):105.[doi:10.3969/j.issn.1673-629X.2018.09.022]
 WANG Bingyu,WU Zhenyu,SHEN Subin,et al.Survey on Event Detection Research in Social Media[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(05):105.[doi:10.3969/j.issn.1673-629X.2018.09.022]
[3]刘申凯,周霁婷,朱永华,等.融合知识图谱和 ESA 方法的网络新词识别[J].计算机技术与发展,2019,29(03):12.[doi:10.3969/ j. issn.1673-629X.2019.03.003]
 LIU Shen-kai,ZHOU Ji-ting,ZHU Yong-hua,et al.Network New Word Recognition Based on Fusion of Knowledge Graph and ESA[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2019,29(05):12.[doi:10.3969/ j. issn.1673-629X.2019.03.003]
[4]戈其平,钟艳如.基于数学教学的知识图谱构建[J].计算机技术与发展,2019,29(03):187.[doi:10.3969/ j. issn.1673-629X.2019.03.039]
 GE Qi-ping,ZHONG Yan-ru.Construction of Knowledge Atlas Based on Mathematics Teaching[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2019,29(05):187.[doi:10.3969/ j. issn.1673-629X.2019.03.039]
[5]魏 瑾,李伟华,潘 炜.基于知识图谱的智能决策支持技术及应用研究[J].计算机技术与发展,2020,30(01):1.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 001]
 WEI Jin,LI Wei-hua,PAN Wei.Research on Intelligent Decision Support Technology and Application Based on Knowledge Graph[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(05):1.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 001]
[6]项 威,王 邦.中文事件抽取研究综述[J].计算机技术与发展,2020,30(02):1.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 001]
 XIANG Wei,WANG Bang.Survey of Chinese Event Extraction Research[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(05):1.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 001]
[7]陆菁宇,张绍阳,黄文旎.学科发展状态的知识图谱构建[J].计算机技术与发展,2020,30(06):145.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 028]
 LU Jing-yu,ZHANG Shao-yang,HUANG Wen-ni.Analysis of Development Status of Discipline Based on Knowledge Graph[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(05):145.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 028]
[8]黄东晋,秦 汉,郭 昊.基于 BERT-CNN 的电影原声智能问答系统[J].计算机技术与发展,2020,30(11):158.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 029]
 HUANG Dong-jin,QIN Han,GUO Hao.Movie Soundtrack Intelligent Question and Answer System Based on BERT-CNN[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(05):158.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 029]
[9]任佳妮,杨 阳.全球医疗机器人技术领域创新态势分析[J].计算机技术与发展,2021,31(04):158.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 027]
 REN Jia-ni,YANG Yang.Analysis of Innovation Situation in Field of Global MedicalRobot Technology[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2021,31(05):158.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 027]
[10]卢 琪,谢艺菲,谢 钧,等.知识图谱在智能问答中的应用研究[J].计算机技术与发展,2021,31(07):13.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 003]
 LU Qi,XIE Yi-fei,XIE Jun,et al.Research on Application of Knowledge Graphs in Intelligent Question Answering[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2021,31(05):13.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 003]

更新日期/Last Update: 2020-05-10