[1]庄 崟,郭志川,黄逍颖.基于协同过滤的自适应 Web 服务 QoS 预测方法[J].计算机技术与发展,2020,30(03):93-97.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 018]
 ZHUANG Yin,GUO Zhi-chuan,HUANG Xiao-ying.An Adaptive Web Service QoS Prediction Method Based on Collaborative Filtering[J].Computer Technology and Development,2020,30(03):93-97.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 018]
点击复制

基于协同过滤的自适应 Web 服务 QoS 预测方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年03期
页码:
93-97
栏目:
智能、算法、系统工程
出版日期:
2020-03-10

文章信息/Info

Title:
An Adaptive Web Service QoS Prediction Method Based on Collaborative Filtering
文章编号:
1673-629X(2020)03-0093-05
作者:
庄 崟1郭志川23黄逍颖23
1.江苏有线技术研究院有限公司,江苏 南京 210001; 2.中国科学院声学研究所国家网络新媒体工程技术研究中心,北京 100190; 3.中国科学院大学,北京 100049
Author(s):
ZHUANG Yin1GUO Zhi-chuan23HUANG Xiao-ying23
1.Jiangsu Cable Technology Research Institute Co.,Ltd.,Nanjing 210001,China; 2.National Network New Media Engineering Research Center,Institute of Acoustics, Chinese Academy of Sciences,Beijing 100190,China; 3.University of Chinese Academy of Sciences?Beijing 100049,China
关键词:
协同过滤Web服务QoS预测自适应客户端
Keywords:
collaborative filteringWeb serviceQoS predictionadaptiveclient
分类号:
TP317
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 03. 018
摘要:
随着Web服务越来越多,服务质量 QoS 作为描述Web服务的非功能性属性变得越来越重要。 通常,一种服务的 QoS 对用户来说是未知的,因此对于基于Web服务的应用,精确预测其未知的QoS对于成功部署该服务具有重要的价值。 基于协同过滤的WSRec算法是一种高精度的QoS预测方法,为进一步提升QoS的预测精度,提出了一种协同过滤的自适 应Web服务QoS预测方法。 该方法通过客户端首先发出QoS-Web服务请求;服务端接到请求后,根据已有数据,计算两 两用户或服务间的相似度;并根据相似性找到对于目标用户的 K 个最接近用户或服务,生成该QoS值预测值 A;同时在计 算相似性时,采用改进皮尔逊相关系数得到预测值 B;最后将预测值 A 和 B 以权值相结合得到目标用户或服务的QoS值。 该算法改进了单一的协同过滤在数据稀疏的情况下,对相似性给予过高估计的不足,使得QoS预测值精度得以提高,取得了更好的实验结果。 实验表明该方法预测精度优于WSRec算法。
Abstract:
With more and more Web services,quality-of-service(QoS) is becoming more and more important for as a non-functional attribute describing Web services. Generally,the QoS values of a service are unknown to its users,so the accurate prediction of unknown QoS values is significant for the successful deployment of Web service-based applications. WSRec algorithm based on collaborative filtering is a highly accurate method for predicting QoS. In order to improve the accuracy of QoS prediction further,an adaptive Web service QoS prediction method based on collaborative filtering is proposed. This method firstly sends QoS-based Web request to the server through the client. After receiving the request,the server calculates the similarity between each of the two users or between each of the two services based on the QoS data. At the same time,according to these similarities,theKclosest users or services to the target user are found,and the predicted valueAof QoS is generated. When calculating the similarity,the predicted Pearson correlation coefficient is used to obtain the predicted value B. Finally,the predicted values A and Bare given to obtain the QoS value by changing the weight between the two values.The algorithm improves the accuracy of QoS prediction by improving the shortcomings of a single collaborative filtering to overestimate the similarity in the case of sparsely populated data,and obtains a better experimental result.The experiment shows that the proposed method achieves better prediction accuracy than WSRec algorithm.

相似文献/References:

[1]李学俭 何文华.基于SOA架构的高校数据资源整合研究[J].计算机技术与发展,2010,(01):74.
 LI Xue-jian,HE Wen-hua.Research of Campus Data Integration Based on SOA[J].Computer Technology and Development,2010,(03):74.
[2]戴雪梅 姜浩.基于带权图规划算法的语义Web服务组合[J].计算机技术与发展,2010,(03):67.
 DAI Xue-mei,JIANG Hao.Semantic Web Services Composition Based on Weighted Planning Graph Algorithm[J].Computer Technology and Development,2010,(03):67.
[3]张小欢 管有庆 王佳伟.基于BTP的Web服务事务协调研究与实现[J].计算机技术与发展,2010,(04):39.
 ZHANG Xiao-huan,GUAN You-qing,WANG Jia-wei.Research and Implementation on BTP- Based Web Services Transaction Coordination[J].Computer Technology and Development,2010,(03):39.
[4]李文亮 刘竹松 陈璟.基于SOA的科研管理系统的分析与设计[J].计算机技术与发展,2010,(05):234.
 LI Wen-liang,LIU Zhu-song,CHEN Jing.Analysis and Design of Management System of Scientific Research Based on SOA[J].Computer Technology and Development,2010,(03):234.
[5]李苏 刘建勋.Web服务的绑定与调用方法研究[J].计算机技术与发展,2010,(06):59.
 LI Su,LIU Jian-xun.Research on Methods of Web Service Binding and Invocation[J].Computer Technology and Development,2010,(03):59.
[6]邵延振 蒙韧 袁鼎荣 李新友.基于Web结构分区的协同过滤推荐算法研究[J].计算机技术与发展,2010,(06):67.
 SHAO Yan-zhen,MENG Ren,YUAN Ding-rong,et al.Collaborative Filtering Recommendation Algorithm Research Based on Web Blocks[J].Computer Technology and Development,2010,(03):67.
[7]刘振岩 王勇 陈立平 马俊杰 陈天恩.基于SVM的农业智能决策Web服务的研究与实现[J].计算机技术与发展,2010,(06):213.
 LIU Zhen-yan,WANG Yong,CHEN Li-ping,et al.Research and Implementation of Intelligence Decision Web Services Based on SVM for Digital Agriculture[J].Computer Technology and Development,2010,(03):213.
[8]王丽侠 楼玉萍 吕君可.基于Web服务的电力信息集成系统[J].计算机技术与发展,2009,(05):173.
 WANG Li-xia,LOU Yu-ping,LU Jun-ke.A Power Information Integration System Based on Web Services[J].Computer Technology and Development,2009,(03):173.
[9]高云全.一种基于语义的Web服务动态组合及其实现[J].计算机技术与发展,2009,(06):65.
 GAO Yun-quan.A Dynamic Web Services Composition and Realization Based on Semantic[J].Computer Technology and Development,2009,(03):65.
[10]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].Computer Technology and Development,2009,(03):69.

更新日期/Last Update: 2020-03-10