[1]李 寒,余 斌,佟 宁,等.一种电力感知数据的离群点检测方案[J].计算机技术与发展,2020,30(02):153-158.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 030]
 LI Han,YU Bin,TONG Ning,et al.An Electric Power Sensor Data Oriented Outlier Detection Solution[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(02):153-158.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 030]
点击复制

一种电力感知数据的离群点检测方案()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年02期
页码:
153-158
栏目:
应用开发研究
出版日期:
2020-02-10

文章信息/Info

Title:
An Electric Power Sensor Data Oriented Outlier Detection Solution
文章编号:
1673-629X(2020)02-0153-06
作者:
李 寒12余 斌12佟 宁3王鑫浩12
1. 北方工业大学 计算机学院,北京 100144; 2. 大规模流数据集成与分析技术北京市重点实验室,北京 100144; 3. 大连交通大学 软件学院,辽宁 大连 116052
Author(s):
LI Han12YU Bin12TONG Ning3WANG Xin-hao12
1.School of Computer Science,North China University of Technology,Beijing 100144,China; 2.Beijing Key Laboratory on Integration and Analysis of Large-scale Stream Data,Beijing 100144,China; 3.School of Software,Dalian Jiaotong University,Dalian 116052,China
关键词:
电力感知数据离群点检测聚类数据分类服务
Keywords:
electric power sensor dataoutlier detectionclusteringdata classificationservice
分类号:
TP399
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 02. 030
摘要:
鉴于离群点引发的数据质量问题给电力应用造成的不良影响,对电力感知数据的特征进行了分析,并基于电力感知数据的时间特征和异常检测技术的易用性需求,提出一种电力感知数据的离群点检测方案。 该方案由异常检测服务框 架和离群点检测方法构成。 异常检测服务框架借鉴 Web 服务的思想,基于大数据技术,能够支持电力感知数据的存储和 计算,并且以服务的形式提供电力感知数据的异常检测能力。 离群点检测方法是基于聚类算法和考虑时间属性的数据分 段方法来检测电力感知数据中的离群点异常。 通过实验验证了该方法的可行性和有效性,结果表明该方法能够有效识别 具有时间相关性和连续性的电力感知数据中存在的离群点,且在数据规模增大时,具有良好的并行性和可扩展性。
Abstract:
In view of the adverse effects of data quality problems caused by outliers on power applications,the characteristics of power sensor data are analyzed. Based on the temporal characteristics of power sensor data and the usability of anomaly detection technology,an electric power sensor data oriented outlier detection solution isproposed,which consistsofan anomaly detection service framework and an outlier detection method. The anomaly detection service framework refers to the idea of Web service,and based on big data technology it can support the storage and calculation? of power sensing data,and provide anomaly detection capability of power sensing data in the form of service. The outlier detection method is accomplished on the basis of clustering algorithm and a temporal characteristics related data segmentation method to detect outlier anomalies in power perception data. The feasibility and effectiveness of the proposed method are verified by experiment. The results show that this method can effectively identify outliers in power sensing data which are time-related and time-continuous,and has great parallelism and scalability when the data scale increases.

相似文献/References:

[1]施冬冬 贾瑞玉 黄义堂.基于遗传算法的高维离群点检测算法的改进[J].计算机技术与发展,2009,(03):141.
 SHI Dong-dong,JIA Rui-yu,HUANG Yi-tang.An Improved High-Dimensional Outlier Detection Algorithm Based on Genetic Algorithm[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2009,(02):141.
[2]包小兵 翟素兰 程兰兰.基于信息熵加权的局部离群点检测算法[J].计算机技术与发展,2012,(09):59.
 BAO Xiao-bing,ZHAI Su-lan,CHENG Lan-lan.SLOM Outlier Mining Algorithm Based on Entropy Weighted[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2012,(02):59.
[3]刘俊成,董 东.基于相对比重的扩展隔离森林算法[J].计算机技术与发展,2023,33(06):16.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 003]
 LIU Jun-cheng,DONG Dong.Extended Isolation Forest Algorithm Based on Relative Proportion[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2023,33(02):16.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 003]
[4]高亚星,赵旭俊,曹栩阳.基于融合数据自表示的离群点检测算法[J].计算机技术与发展,2023,33(12):41.[doi:10. 3969 / j. issn. 1673-629X. 2023. 12. 006]
 GAO Ya-xing,ZHAO Xu-jun,CAO Xu-yang.An Outlier Detection Algorithm Based on Fusion Data Self-representation[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2023,33(02):41.[doi:10. 3969 / j. issn. 1673-629X. 2023. 12. 006]

更新日期/Last Update: 2020-02-10