[1]袁鹏泰,刘宁钟.基于关节点提取的老年人跌倒检测算法[J].计算机技术与发展,2019,29(09):200-204.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 038]
 YUAN Peng-tai,LIU Ning-zhong.Elderly Fall Detection Algorithm Based on Joint Point Extraction[J].,2019,29(09):200-204.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 038]
点击复制

基于关节点提取的老年人跌倒检测算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年09期
页码:
200-204
栏目:
应用开发研究
出版日期:
2019-09-10

文章信息/Info

Title:
Elderly Fall Detection Algorithm Based on Joint Point Extraction
文章编号:
1673-629X(2019)09-0200-05
作者:
袁鹏泰刘宁钟
南京航空航天大学 计算机科学与技术学院,江苏 南京 211106
Author(s):
YUAN Peng-taiLIU Ning-zhong
School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
关键词:
yoloopenposeSVM关节点提取跌倒检测
Keywords:
yoloopenposeSVMjoint point extractionfall detection
分类号:
TP301.6
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 09. 038
摘要:
随着人口老龄化问题日益严重,老年人的安全问题变得愈加重要,而对老年人安全问题威胁最大的便是老年人的跌倒问题,因此文中提出了一种基于关节点提取以及 SVM 分类器的老年人跌倒检测算法。 首先通过改进的 yolo 算法检测出视频帧图像中的人所在的位置,然后将单个人的图像送入 openpose 算法中获得这个人的关节信息。 之后再通过 SVM 分类器对获得到的关节点信息进行分类,以得到这个人所处的状态(此处将人可能处于的状态分为 4 类——正常状态、跌倒状态、平躺状态以及其他状态)。 对于整段视频便得到一个状态序列集,之后对这个状态序列集进行分析便能够检测出视频中是否有跌倒事件发生。 经实验对比,该算法对于单人存在的场景有着 98% 以上的准确率,并且对于多人存在的场景具有一定的鲁棒性。
Abstract:
With the increasingly serious aging of the population,the safety of the elderly becomes more and more important,and the biggest threat to the safety of the elderly is the fall of the elderly. Therefore,we propose a fall detection algorithm for the elderly based on joint point extraction and SVM classifier. First of all,the location of the person in video frame images is detected by the improved yolo algorithm,and then the image of an individual is sent to openpose algorithm to obtain the joint information of the person. Then,the obtained joint point information will be classified by the SVM classifier to get the state of the person (There are four possible states of being–normal,falling,lying flat,and others). After that,we will get a state sequence set which is analyzed to detect whether there is a fall event in the video. Through experimental comparison,the proposed algorithm has an accuracy rate of more than 98% for scenes with single presence and robustness for scenes with multiple presence.

相似文献/References:

[1]周巧瑜,曹 扬,詹瑾瑜,等.基于 Yolo 和 GOTURN 的景区游客翻越行为识别[J].计算机技术与发展,2022,32(01):134.[doi:10. 3969 / j. issn. 1673-629X. 2022. 01. 023]
 ZHOU Qiao-yu,CAO Yang,ZHAN Jin-yu,et al.A Fence Climbing Behavior Recognition of Scenic AreaTourist Based on Yolo and GOTURN[J].,2022,32(09):134.[doi:10. 3969 / j. issn. 1673-629X. 2022. 01. 023]
[2]于 全,宋金玉,余晓晗.解决抽象标签的图像分类的多示例两阶段模型[J].计算机技术与发展,2022,32(06):68.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 012]
 YU Quan,SONG Jin-yu,YU Xiao-han.Multi-instance Two-stage Model of Solving Image Classification Problem of Abstract Labels[J].,2022,32(09):68.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 012]
[3]彭 耿,刘宁钟.基于注意力机制的食物识别与定位算法[J].计算机技术与发展,2022,32(11):121.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 018]
 PENG Geng,LIU Ning-zhong.Food Recognition and Location Algorithm Based on Attention Mechanism[J].,2022,32(09):121.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 018]
[4]王烨奎,曹铁勇,王 杨,等.CAMOU-YOLO:一种迷彩伪装目标检测模型[J].计算机技术与发展,2022,32(12):29.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 005]
 WANG Ye-kui,CAO Tie-yong,WANG Yang,et al.CAMOU-YOLO:A Camouflaged Object Detection Model[J].,2022,32(09):29.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 005]
[5]薛继伟,孙宇锐.基于改进 YOLOv5 的光学遥感图像水坝检测研究[J].计算机技术与发展,2023,33(05):69.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 011]
 XUE Ji-wei,SUN Yu-rui.Research on Dam Detection of Optical Remote Sensing Image Based on Improved YOLOv5[J].,2023,33(09):69.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 011]
[6]朱 郝,杨世恩,陈春梅.基于结构重参数化技术的轻量化目标检测算法[J].计算机技术与发展,2023,33(10):169.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 026]
 ZHU Hao,YANG Shi-en,CHEN Chun-mei.A Lightweight Object Detection Algorithm Based on Structural Re-parameterization Technique[J].,2023,33(09):169.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 026]

更新日期/Last Update: 2019-09-10