[1]苏晓云,祝永志.基于特征和项目近邻的混合推荐算法研究[J].计算机技术与发展,2019,29(09):71-75.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 014]
 SU Xiao-yun,ZHU Yong-zhi.Research on Hybrid Recommendation Algorithm Based on Feature and Item Nearest Neighbor[J].,2019,29(09):71-75.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 014]
点击复制

基于特征和项目近邻的混合推荐算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年09期
页码:
71-75
栏目:
智能、算法、系统工程
出版日期:
2019-09-10

文章信息/Info

Title:
Research on Hybrid Recommendation Algorithm Based on Feature and Item Nearest Neighbor
文章编号:
1673-629X(2019)09-0071-05
作者:
苏晓云祝永志
曲阜师范大学 信息科学与工程学院,山东 日照 276826
Author(s):
SU Xiao-yunZHU Yong-zhi
School of Information Science and Engineering,Qufu Normal University,Rizhao 276826,China
关键词:
协同过滤扩展性Spark 平台动态加权
Keywords:
collaborative filteringscalabilitySpark platformdynamic weighting
分类号:
TP301
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 09. 014
摘要:
针对传统的协同过滤算法在推荐过程中存在的可扩展性差、推荐准确性低等问题,提出了一种基于动态加权的混合协同过滤算法(ItemBase_ALS collaborative filter,IACF)。该算法将基于项目的协同过滤算法(ItemBase CF)与基于矩阵分解的ALS推荐算法按照一定的权重进行混合,并在分布式平台Spark上得以实现,有效解决了算法扩展性问题。该混合算法首先分别利用 ItemBase CF 和 ALS 算法进行初步预测,然后选取能够反映其各自特性的因素,即项目近邻和隐藏特征,按照权重公式进行融合从而得到最终预测结果。 通过调整权重比例,可以突出某一算法的特性,满足不同的推荐需求。 实验选用 MovieLen 电影评分数据集,实验结果表明,混合协同过滤算法较之传统单个算法,既能体现其各自特点及变化规律,在可扩展性、准确性上也有所改善。
Abstract:
A hybrid collaborative filtering algorithm (ItemBase_ALS collaborative filtering,IACF) based on dynamic weighting is proposed to solve the problems of poor scalability and low recommendation accuracy in the traditional collaborative filtering algorithm.The algorithm combines the item-based collaborative filtering algorithm (ItemBase CF) and the matrix factor-based ALS recommendation algorithm according to certain weights and is implemented on the distributed platform Spark which effectively solves the problem of scalability. The hybrid algorithm first uses ItemBase CF and ALS algorithms to make preliminary prediction respectively,and then selects the factors that can reflect their respective characteristics,that is,item nearest neighbor and hidden feature,and fuses them according to the weight formula to get the final prediction results. By adjusting the weight ratio,the characteristics of an algorithm can be highlighted to meet different recommendation requirements. The experiment on MovieLen dataset shows that the hybrid collaborative filtering algorithm can not only reflect their own characteristics and change rules,but also improve the scalability and accuracy.

相似文献/References:

[1]刘春涛 陆建德 王月平.一个新型分布式无线传感器分层路由协议[J].计算机技术与发展,2010,(04):35.
 LIU Chun-tao,LU Jian-de,WANG Yue-ping.A New Distributed WSN Cluster- Based Routing Protocol[J].,2010,(09):35.
[2]邵延振 蒙韧 袁鼎荣 李新友.基于Web结构分区的协同过滤推荐算法研究[J].计算机技术与发展,2010,(06):67.
 SHAO Yan-zhen,MENG Ren,YUAN Ding-rong,et al.Collaborative Filtering Recommendation Algorithm Research Based on Web Blocks[J].,2010,(09):67.
[3]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(09):69.
[4]姜雅倩 王直杰 张珏.基于供求关系及协同过滤技术的推荐模型研究[J].计算机技术与发展,2007,(06):18.
 JIANG Ya-qian,WANG Zhi-jie,ZHANG Jue.Research on Recommendation Model Based on Supply and Demand Relation and Collaborative Filtering[J].,2007,(09):18.
[5]游文 叶水生.电子商务推荐系统中的协同过滤推荐[J].计算机技术与发展,2006,(09):70.
 YOU Wen,YE Shui-sheng.A Survey of Collaborative Filtering Algorithm Applied in E- commerce Recommender System[J].,2006,(09):70.
[6]徐红 彭黎 郭艾寅 徐云剑.基于用户多兴趣的协同过滤策略改进研究[J].计算机技术与发展,2011,(04):73.
 XU Hong,PENG Li,GUO Ai-yin,et al.User-Based Collaborative Filtering Strategies More Interested in Improvement of Research[J].,2011,(09):73.
[7]杨东风 牛永洁.基于混合规则的图书推荐模型设计与研究[J].计算机技术与发展,2011,(07):210.
 YANG Dong-feng,NIU Yong-jie.Books Recommended Model Design and Research Based on Mixing Rules[J].,2011,(09):210.
[8]吴月萍 王娜 马良.基于蚁群算法的协同过滤推荐系统的研究[J].计算机技术与发展,2011,(10):73.
 WU Yue-ping,WANG Na,MA Liang.Research of Collaboration Filtering Recommendation System Based on Ant Algorithm[J].,2011,(09):73.
[9]李克潮,蓝冬梅.一种属性和评分的协同过滤混合推荐算法[J].计算机技术与发展,2013,(07):116.
 LI Ke-chao,LAN Dong-mei.A Collaborative Filtering Hybrid Recommendation Algorithm for Attribute and Rating[J].,2013,(09):116.
[10]王余蓝.基于图形数据库的DBLP数据存储[J].计算机技术与发展,2013,(08):18.
 WANG Yu-lan.DBLP Data Storage Based on Graphics Database[J].,2013,(09):18.

更新日期/Last Update: 2019-09-10