[1]瞿锡垚,刘学军,张 礼.一种增加先验知识库的贝叶斯网络推理模型[J].计算机技术与发展,2019,29(08):92-95.[doi:10. 3969 / j. issn. 1673-629X. 2019. 08. 018]
 QU Xi-yao,LIU Xue-jun,ZHANG Li.An Inference Model for Bayesian Network with Prior Knowledge Base[J].,2019,29(08):92-95.[doi:10. 3969 / j. issn. 1673-629X. 2019. 08. 018]
点击复制

一种增加先验知识库的贝叶斯网络推理模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年08期
页码:
92-95
栏目:
智能、算法、系统工程
出版日期:
2019-08-10

文章信息/Info

Title:
An Inference Model for Bayesian Network with Prior Knowledge Base
文章编号:
1673-629X(2019)08-0092-04
作者:
瞿锡垚1 刘学军1 张 礼2
1. 南京航空航天大学 计算机科学与技术学院,江苏 南京 211106; 2. 南京林业大学 信息科学技术学院,江苏 南京 210037
Author(s):
QU Xi-yao1 LIU Xue-jun1 ZHANG Li2
1. School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China; 2. School of Information Science and Technology,Nanjing Forestry University,Nanjing 210037,China
关键词:
贝叶斯网络知识库局部马尔可夫性质联结树算法Hugin 消息传递
Keywords:
Bayesian networkknowledge baselocal Markov propertyclique tree algorithmHugin message passing
分类号:
TP31
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 08. 018
摘要:
贝叶斯网络作为一种不确定知识表示网络,由网络结构和各节点的条件概率表组成,在解决系统决策问题方面具有先天的理论优势。 目前在大多数贝叶斯网络的应用中,各节点条件概率表的产生均是以人工输入的方式完成,这在一些拥有较多网络节点的复杂背景中,需要巨大的人工消耗,效率低下。 针对这一问题,提出一种增加先验知识库的贝叶斯网络推理模型。 根据具体的建模问题创建先验知识库,在该先验知识库下对网络节点进行类别标记,然后根据局部马尔可夫性自动生成各节点的条件概率表。 在贝叶斯网络推理任务中,使用在精确推理任务中处理速度快、应用最为广泛的联结树算法,并使用 Hugin 算法完成消息的传递。 最后通过一个贝叶斯网络实例验证了整个模型的处理流程。
Abstract:
As an uncertain knowledge representation network, Bayesian network is composed of network structure and conditional probability table of each node and has an innate theoretical advantage in solving decision problems. At present,in most applications of Bayesian network,the generation of conditional probability table of each node is completed in the form of manual input,which requires huge labor consumption and low efficiency in some complex backgrounds with many network nodes. To address this problem,an inference model for Bayesian network with prior knowledge base is proposed. A prior knowledge base is created for the specific modeling problem,based on which the network nodes are labeled with classes,and then the conditional probability table for each node are generated automatically according to local Markov properties. To infer Bayesian network,the clique tree algorithm with efficiency and popularity in precise inference is adopted,and the Hugin algorithm is utilized to make message transmission. Finally,the entire processing flow of the model is verified by a Bayesian network example.

相似文献/References:

[1]王祥滨 赵克 程培涛 许威.基于领域自然语言理解的知识库管理系统[J].计算机技术与发展,2009,(06):61.
 WANG Xiang-bin,ZHAO Ke,CHENG Pei-tao,et al.A KBMS of a Natural Language Understanding System Based on Domain[J].,2009,(08):61.
[2]宫义山 高媛媛.基于信息融合的诊断贝叶斯网络研究[J].计算机技术与发展,2009,(06):106.
 GONG Yi-shan,GAO Yuan-yuan.Diagnostic Bayesian Networks Research Based on Information Fusion[J].,2009,(08):106.
[3]华珊珊 谢铉洋.XML表示CLIPS知识库的研究[J].计算机技术与发展,2009,(10):93.
 HUA Shan-shan,XIE Xuan-yang.Research on Using XML to Construct CLIPS' Knowledge Base[J].,2009,(08):93.
[4]奚海荣 马文丽 梁斌.基于贝叶斯网络SP算法的改进研究[J].计算机技术与发展,2009,(03):155.
 XI Hai-rong,MA Wen-li,LIANG Bin.Improvement of SP Algorithm Based on Bayesian Networks[J].,2009,(08):155.
[5]刘军 王萍.基于粗糙集理论的故障诊断系统知识库设计[J].计算机技术与发展,2008,(09):95.
 LIU Jun,WANG Ping.Design of Knowledge Base for Fault Diagnosis System Based on Rough Set Theory[J].,2008,(08):95.
[6]房好帅 曹明振 孔令德[].基于J2EE的水资源论证决策支持系统的开发[J].计算机技术与发展,2008,(09):225.
 FANG Hao-shuai,CAO Ming-zhen,KONG Ling-de.Development of Water Resources Argumentation Decision Support System Based on J2EE[J].,2008,(08):225.
[7]于萍 吴业福.面向对象知识表示在起重机专家系统中的应用[J].计算机技术与发展,2008,(11):204.
 YU Ping,WU Ye-fu.Research and Application of Object - Oriented Knowledge Representation in Crane Expert System[J].,2008,(08):204.
[8]詹子鹏 李龙澍.用XML建造专家系统知识库[J].计算机技术与发展,2007,(07):31.
 ZHAN Zi-peng,LI Long-shu.Construct the Expert System Knowledge Base with XML[J].,2007,(08):31.
[9]王峻 周孟然.一种基于MDL度量的选择性扩展贝叶斯分类器[J].计算机技术与发展,2007,(07):35.
 WANG Jun,ZHOU Meng-ran.A Selective Augmented Naive Bayesian Classifier Based on MDL Score[J].,2007,(08):35.
[10]程泽凯.基于TAN结构的启发式贝叶斯网络结构学习算法[J].计算机技术与发展,2007,(08):61.
 CHENG Ze-kai.BN Structure Learning Heuristic Algorithm Based on TAN Structure[J].,2007,(08):61.

更新日期/Last Update: 2019-08-10