[1]张素智,杨 芮,陈小妮.基于独立区域划分和压缩感知的数据融合方法[J].计算机技术与发展,2019,29(08):63-66.[doi:10. 3969 / j. issn. 1673-629X. 2019. 08. 012]
 ZHANG Su-zhi,YANG Rui,CHEN Xiao-ni.Data Fusion Method Based on Independent Region Division and Compressed Sensing[J].,2019,29(08):63-66.[doi:10. 3969 / j. issn. 1673-629X. 2019. 08. 012]
点击复制

基于独立区域划分和压缩感知的数据融合方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年08期
页码:
63-66
栏目:
智能、算法、系统工程
出版日期:
2019-08-10

文章信息/Info

Title:
Data Fusion Method Based on Independent Region Division and Compressed Sensing
文章编号:
1673-629X(2019)08-0063-04
作者:
张素智杨 芮陈小妮
郑州轻工业学院 计算机与通信工程学院,河南 郑州 450001
Author(s):
ZHANG Su-zhiYANG RuiCHEN Xiao-ni
School of Computer and Communication Engineering,Zhengzhou University of Light Industry,Zhengzhou 450001,China
关键词:
数据融合压缩感知区域划分负载均衡信息熵
Keywords:
data fusioncompressed sensingregion divisionload balancinginformation entropy
分类号:
TP311
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 08. 012
摘要:
数据融合是将传感器中的信息按一定准则进行综合整理,从而获得对目标的一致性描述。压缩感知(compressed sensing,CS)技术能利用更少的数据和合适的重构方法得到更精确的原始信号。针对传统数据融合方法不能有效、精确地处理海量的数据,导致融合效果不理想的问题,为提高数据融合的效率和融合效果,根据压缩感知理论的特点,提出了一种基于独立区域划分和压缩感知的数据融合方法。该方法运用压缩感知理论对数据进行采样以获得测量值,并通过独立数据区域划分和负载均衡方法对样本数据进行划分从而形成联合区域。计算了互信息融合权重系数,根据压缩感知系数重构方法获取融合后的数据。仿真实验结果表明,对比传统的数据融合方法,该方法具有较好的稳定性和融合效果。
Abstract:
Data fusion is to synthesize the information in the sensor according to certain criteria,so as to obtain a consistent description of the target. Compressed sensing (CS) technology can use less data and appropriate reconstruction methods to get more accurate original signals. Traditional data fusion methods cannot effectively and accurately process massive amounts of data,resulting in unsatisfactory fusion effect. In order to improve the efficiency and effect of data fusion,a data fusion method based on independent data region division and compression sensing is proposed according to compression sensing theory. The method uses the CS theory to sample the data to obtain the measured values,and divides the sample data by independent data region partitioning and load balancing method to form a joint region. The mutual information fusion weight coefficient is calculated,and the fused data is obtained according to the compressed sensing coefficient reconstruction method. The simulation shows that compared with the traditional data fusion method,the proposed method has better stability and fusion effect.

相似文献/References:

[1]张登银 薄顺荣 许扬扬.边缘检测算法改进及其在QoE测定中的应用[J].计算机技术与发展,2009,(08):49.
 ZHANG Deng-yin,BO Shun-rong,XU Yang-yang.Improved Image Edge Detection Algorithm and Its Application in QoE Measurement[J].,2009,(08):49.
[2]王国芳 李腊元.基于LEACH和PEGASIS的节能可靠路由协议研究[J].计算机技术与发展,2009,(11):115.
 WANG Guo-fang,LI La-yuan.Research on Energy- Saving and Reliable Routing Protocol Based on LEACH and PEGASIS[J].,2009,(08):115.
[3]陶玉贵.车载GPS组合测速系统数据融合算法研究[J].计算机技术与发展,2009,(01):200.
 TAO Yu-gui.Study on Data Fusion Algorithm for GPS Integrated Vehicle Velocity Testing System[J].,2009,(08):200.
[4]王丽 杨全胜.多传感器数据融合的一种方法[J].计算机技术与发展,2008,(02):80.
 WANG Li,YANG Quan-sheng.A Method ,for Data Fusion of Multi - Sensor[J].,2008,(08):80.
[5]郭文普 孙继银 任俊.一种基于数据融合的分布式入侵检测系统[J].计算机技术与发展,2006,(02):217.
 GUO Wen-pu,SUN Ji-yin,REN Jun.A Kind of Distributed IDS Based on Data Fusion[J].,2006,(08):217.
[6]徐飞 钟联炯.一种多传感器数据融合仿真平台的构建与设计[J].计算机技术与发展,2006,(07):212.
 XU Fei,ZHONG Lian-jiong.Design of a Multi - sensor Data Fusion Simulation Platform[J].,2006,(08):212.
[7]王娟 王汝传 孙力娟.数据融合在传感器网络协议中的节能性分析[J].计算机技术与发展,2006,(11):4.
 WANG Juan,WANG Ru-chuan,SUN Li-juan.Energy - Saving Analysis of Data Aggregation in Sensor Network Protocol[J].,2006,(08):4.
[8]吴凡 胡斌杰.数据融合算法在ZigBee网络中的应用研究[J].计算机技术与发展,2011,(02):226.
 WU Fan,HU Bin-jie.Application Research of Data Fusion Algorithm in ZigBee Network[J].,2011,(08):226.
[9]张爱华 薄禄裕 盛飞 杨培.基于小波变换的压缩感知在图像加密中的应用[J].计算机技术与发展,2011,(12):145.
 ZHANG Ai-hua,BO Lu-yu,SHENG Fei,et al.Compressed Sensing Based on Single Layer Wavelet Transform for Image Encryption[J].,2011,(08):145.
[10]李向阳 李玲娟 陈建新 徐小龙.面向情境感知的不确定性数据融合策略[J].计算机技术与发展,2012,(02):127.
 LI Xiang-yang,LI Ling-juan,CHEN Jian-xin,et al.Strategy of Uncertainty Data Fusion for Context-Awareness[J].,2012,(08):127.

更新日期/Last Update: 2019-08-10